luoguP2260 [清华集训2012]模积和
题意
\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}n\%i*m\%j*[i!=j]\)
\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}n\%i*m\%j-\sum\limits_{i=1}^{min(n,m)}n\%i*m\%i\)
\(\sum\limits_{i=1}^n(n-\lfloor\frac{n}{i}\rfloor*i)\sum\limits_{j=1}^m(m-\lfloor\frac{m}{j}\rfloor*j)-\sum\limits_{i=1}^{min(n,m)}n*m-(n*\lfloor\frac{m}{i}\rfloor+m*\lfloor\frac{n}{i}\rfloor)*i+\lfloor\frac{n}{i}\rfloor*\lfloor\frac{m}{i}\rfloor*i^2\)
除法分块就好了。
#include<bits/stdc++.h>
using namespace std;
#define int long long
const int mod=19940417;
const int inv6=3323403;
const int inf=1e9;
int n,m,ans;
inline int calc1(int l,int r){return ((l+r)*(r-l+1)/2)%mod;}
inline int calc2(int x){return x*(x+1)%mod*(2*x+1)%mod*inv6%mod;}
inline int calc(int x)
{
int res=0;
for(int l=1,r;l<=x;l=r+1)
{
r=x/(x/l);
int tmp=x*(r-l+1)%mod-(x/l)*calc1(l,r)%mod;
res=((res+tmp)%mod+mod)%mod;
}
return res;
}
signed main()
{
scanf("%lld%lld",&n,&m);
if(n>m)swap(n,m);
ans=calc(n)*calc(m)%mod;
for(int l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
int tmp1,tmp2,tmp3;
tmp1=n*m%mod*(r-l+1)%mod;
tmp2=(n*(m/l)%mod+m*(n/l)%mod)%mod*calc1(l,r)%mod;
tmp3=(n/l)*(m/l)%mod*((calc2(r)-calc2(l-1))%mod+mod)%mod;
ans=((ans-tmp1+tmp2-tmp3)%mod+mod)%mod;
}
printf("%lld",ans);
return 0;
}
luoguP2260 [清华集训2012]模积和的更多相关文章
- P2260 [清华集训2012]模积和
P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ ...
- P2260 [清华集训2012]模积和 【整除分块】
一.题目 P2260 [清华集训2012]模积和 二.分析 参考文章:click here 具体的公式推导可以看参考文章.博主的证明很详细. 自己在写的时候问题不在公式推导,公式还是能够比较顺利的推导 ...
- 洛谷 P2260 [清华集训2012]模积和 || bzoj2956
https://www.lydsy.com/JudgeOnline/problem.php?id=2956 https://www.luogu.org/problemnew/show/P2260 暴力 ...
- 洛谷P2260 [清华集训2012]模积和(容斥+数论分块)
题意 https://www.luogu.com.cn/problem/P2260 思路 具体思路见下图: 注意这个模数不是质数,不能用快速幂来求逆元,要用扩展gcd. 代码 #include< ...
- BSOJ 4062 -- 【清华集训2012】串珠子
Description 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不 ...
- Luogu P4247 [清华集训2012]序列操作
题意 给定一个长度为 \(n\) 的序列 \(a\) 和 \(q\) 次操作,每次操作形如以下三种: I a b c,表示将 \([a,b]\) 内的元素加 \(c\). R a b,表示将 \([a ...
- UOJ 275. 【清华集训2016】组合数问题
UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选 ...
- Loj #2331. 「清华集训 2017」某位歌姬的故事
Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符, ...
- Loj 2320.「清华集训 2017」生成树计数
Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...
随机推荐
- FFT_应用和例题
卷积 现有两个定义在 N 上的函数 \(f(n),g(n)\),定义 \(f\) 和 \(g\) 的卷积(convolution)为 \(f \otimes g\) \[ (f \otimes g)( ...
- python数据分析教程大全
第一篇:Anaconda安装和使用 第二篇:Jupyter norebook使用 第三篇:pandas教程 第四篇:numpy教程 第五篇:Matplotlib教程 第六篇:实战项目 期待吗?(微笑脸 ...
- Python入门基础学习记录(二)汇率案例学习记录
一.汇总整理 1.操作 ①新建python文件 工程右键--new--python file 2.注意问题与知识点 >变量定义:直接写变量名即可,例如定义一个字符串并赋值123: rmb_str ...
- JVM-基本操作
1.我们为什么要对jvm做优化?在本地开发环境中我们很少会遇到需要对jvm进行优化的需求,但是到了生产环境,我们可能将有下面的需求: 运行的应用“卡住了”,日志不输出,程序没有反应服务器的CPU负载突 ...
- Unreal Engine 4 系列教程 Part 8:粒子系统教程
.katex { display: block; text-align: center; white-space: nowrap; } .katex-display > .katex > ...
- MongoDB自学------(2)创建删除数据库及集合
一.创建数据库 二.查看所有数据库 三.删除数据库 四.创建集合 五.删除集合 六.集合用法介绍 1.创建集合 2.删除集合 下一篇链接:https://www.cnblogs.com/LinHuCh ...
- 简明了解apply()和call()
apply()和call()都是ES6语法的,并且都是函数的方法. function foo() { alert(this.name) } var obj = { name: '小明' } foo() ...
- Nginx自建SSL证书部署HTTPS网站
一.创建SSL相关证书 1.安装Nginx(这里为了测试使用yum安装,实际看具体情况) [root@localhost ~]# yum install nginx -y #默认yum安装已经支持SS ...
- .net core 发布到iis问题 HTTP Error 500.30 - ANCM In-Process Start Failure
1. 没有在Program里配置IIS webBuilder.UseIIS(); 2. StartupProduction 里AutoFac容器注入错误和新版的CORS中间件已经阻止使用允许任意Ori ...
- C#中窗口关闭时没有取消事件订阅导致事件重复执行的解决方法
场景 C#中委托与事件的使用-以Winform中跨窗体传值为例: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/100150700 ...