题意

\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}n\%i*m\%j*[i!=j]\)

\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}n\%i*m\%j-\sum\limits_{i=1}^{min(n,m)}n\%i*m\%i\)

\(\sum\limits_{i=1}^n(n-\lfloor\frac{n}{i}\rfloor*i)\sum\limits_{j=1}^m(m-\lfloor\frac{m}{j}\rfloor*j)-\sum\limits_{i=1}^{min(n,m)}n*m-(n*\lfloor\frac{m}{i}\rfloor+m*\lfloor\frac{n}{i}\rfloor)*i+\lfloor\frac{n}{i}\rfloor*\lfloor\frac{m}{i}\rfloor*i^2\)

除法分块就好了。

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int mod=19940417;
const int inv6=3323403;
const int inf=1e9;
int n,m,ans;
inline int calc1(int l,int r){return ((l+r)*(r-l+1)/2)%mod;}
inline int calc2(int x){return x*(x+1)%mod*(2*x+1)%mod*inv6%mod;}
inline int calc(int x)
{
int res=0;
for(int l=1,r;l<=x;l=r+1)
{
r=x/(x/l);
int tmp=x*(r-l+1)%mod-(x/l)*calc1(l,r)%mod;
res=((res+tmp)%mod+mod)%mod;
}
return res;
}
signed main()
{
scanf("%lld%lld",&n,&m);
if(n>m)swap(n,m);
ans=calc(n)*calc(m)%mod;
for(int l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
int tmp1,tmp2,tmp3;
tmp1=n*m%mod*(r-l+1)%mod;
tmp2=(n*(m/l)%mod+m*(n/l)%mod)%mod*calc1(l,r)%mod;
tmp3=(n/l)*(m/l)%mod*((calc2(r)-calc2(l-1))%mod+mod)%mod;
ans=((ans-tmp1+tmp2-tmp3)%mod+mod)%mod;
}
printf("%lld",ans);
return 0;
}

luoguP2260 [清华集训2012]模积和的更多相关文章

  1. P2260 [清华集训2012]模积和

    P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ ...

  2. P2260 [清华集训2012]模积和 【整除分块】

    一.题目 P2260 [清华集训2012]模积和 二.分析 参考文章:click here 具体的公式推导可以看参考文章.博主的证明很详细. 自己在写的时候问题不在公式推导,公式还是能够比较顺利的推导 ...

  3. 洛谷 P2260 [清华集训2012]模积和 || bzoj2956

    https://www.lydsy.com/JudgeOnline/problem.php?id=2956 https://www.luogu.org/problemnew/show/P2260 暴力 ...

  4. 洛谷P2260 [清华集训2012]模积和(容斥+数论分块)

    题意 https://www.luogu.com.cn/problem/P2260 思路 具体思路见下图: 注意这个模数不是质数,不能用快速幂来求逆元,要用扩展gcd. 代码 #include< ...

  5. BSOJ 4062 -- 【清华集训2012】串珠子

    Description 铭铭有n个十分漂亮的珠子和若干根颜色不同的绳子.现在铭铭想用绳子把所有的珠子连接成一个整体. 现在已知所有珠子互不相同,用整数1到n编号.对于第i个珠子和第j个珠子,可以选择不 ...

  6. Luogu P4247 [清华集训2012]序列操作

    题意 给定一个长度为 \(n\) 的序列 \(a\) 和 \(q\) 次操作,每次操作形如以下三种: I a b c,表示将 \([a,b]\) 内的元素加 \(c\). R a b,表示将 \([a ...

  7. UOJ 275. 【清华集训2016】组合数问题

    UOJ 275. [清华集训2016]组合数问题 组合数 $C_n^m $表示的是从 \(n\) 个物品中选出 \(m\) 个物品的方案数.举个例子,从$ (1,2,3)(1,2,3)$ 三个物品中选 ...

  8. Loj #2331. 「清华集训 2017」某位歌姬的故事

    Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符, ...

  9. Loj 2320.「清华集训 2017」生成树计数

    Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...

随机推荐

  1. A1047 Student List for Course (25 分)

    一.技术总结 首先题目要看清湖,提出的条件很关键,比如for循环的终止条件,特别注意. 还有这个题目主要考虑到vector的使用,还有注意一定要加上using namespace std; 输出格式, ...

  2. MySQL统计信息简介

    作者:王小龙@网易乐得DBA 原文地址: http://mp.weixin.qq.com/s/698g5lm9CWqbU0B_p0nLMw MySQL执行SQL会经过SQL解析和查询优化的过程,解析器 ...

  3. iOS Workflow 分享 - Scan QR Code

    很多时候我们无意识地用微信扫描一个 QR Code,然后无论打开的是什么我们用就是了.我经常会好奇到底 QR Code 编码的是什么信息,到底是一个 ID 呢,还是一个 URL(可能是 deeplin ...

  4. (三十)golang--面向对象

    首先我们要明确: golang并不是纯粹的面向对象的编程语言: golang没有类class,使用struct代替: golang面向对象编程非常简洁,去掉了传统的继承.重载.构造函数和析构函数.隐藏 ...

  5. js 价格 格式化 数字和金额

    方法一: abs = function(val){ //金额转换 分->元 保留2位小数 并每隔3位用逗号分开 1,234.56 var str = (val/100).toFixed(2) + ...

  6. 明解JAVA 第二章答案

    练习2-1 编译错误,无法运行. 练习2-2 package candle1220; class Nightwatch{ public static void main(String[] args) ...

  7. 一个比 AutoMapper 更快的模型映射的组件 Mapster

    下面是官方的性能测试 Demo,感性的也可以去 Github 上下载. 贴出代码目的是如果后期直接从自己的博客中在线看. using System; using System.Collections. ...

  8. 在 EF Core 中 Book 实体在新增、修改、删除时,给 LastUpdated 字段赋值。

    直接贴代码: public class MenusContext : DbContext { public static class ColumnNames { public const string ...

  9. 云原生生态周报 Vol. 15 | K8s 安全审计报告发布

    业界要闻 CNCF 公布 Kubernetes 的安全审计报告 报告收集了社区对 Kubernetes.CoreDNS.Envoy.Prometheus 等项目的安全问题反馈,包含从一般弱点到关键漏洞 ...

  10. [CrackMe]160个CrackMe之002

    吾爱破解专题汇总:[反汇编练习]160个CrackME索引目录1~160建议收藏备用 一.逆向分析之暴力破解 暴力破解,对于这种具有提示框的,很好定位. 定位好之后,爆破其跳转语句,就能达到破解目的. ...