Collecting metrics with the PostgreSQL and TimescaleDB output plugin for Telegraf

Telegraf can collect metrics from a wide array of inputs and write them to a wide array of outputs. It is plugin-driven for both collection and output of data so it is easily extendable. It is written in Go, which means that it is compiled and standalone binary that can be executed on any system with no need for external dependencies, or package management tools required.
Telegraf is an open-source tool. It contains over 200 plugins for gathering and writing different types of data written by people who work with that data.
We wrote the PostgreSQL output plugin which also has the ability to send data to a TimescaleDB hypertable. The pull request is open and currently under review by the Telegraf developers, waiting to be merged. To give developers the opportunity to try this functionality, we built downloadable binaries of Telegraf with our plugin already included.
This tutorial will run through a couple of examples on how to use the PostgreSQL/TimescaleDB output plugin for Telegraf.
Installation
Before we start
Before we start, you will need TimescaleDB installed and a means to connect to it.
Setting up Telegraf
Telegraf is written in Go, and the current build process of the tool is configured to produce one standalone binary. Because of this all the code for the different plugins must be part of that binary. We have an unofficial build of Telegraf version 1.10.4 with our plugin added.
Once you download the binary and extract it to a suitable location (or install the packages) we can test out the build. You may have to make the file executable by running chmod +x telegraf. We can check the version of the installed Telegraf with
$ telegraf --version
If the installation was successful it should print out Telegraf 1.10.4-with-pg.
Telegraf Configuration
When Telegraf is started, a config file needs to be specified. The config file contains the setup for the:
- Telegraf agent
- Collection interval
- Jitter
- Buffer and batch size and so on
- Global tags added to all collected metrics from all inputs
- Enabled outputs, processors, aggregators, inputs (and their respective configuration)
A sample config file with PostgreSQL included as a plugin can be generated by executing
$ telegraf --input-filter=cpu --output-filter=postgresql config > telegraf.conf
The above command generates a config file that enables the CPU input plugin (which samples various metrics about CPU usage) and the PostgreSQL output plugin.
The config file also includes all available input, output, processor, and aggregator plugins, but commented out. So, it's easy to see how a plugin should be configured.
Testing out the config file
To test our configuration, we can output a single collection to STDOUT. By running
$ telegraf --config telegraf.conf --test
we select the generated config file that enables only the CPU input plugin. And the output should look something like:
> cpu,cpu=cpu0,host=local usage_guest=0,usage_idle=78.431372,usage_iowait=0,usage_irq=0,usage_softirq=0,usage_steal=0,usage_system=11.764705,usage_user=9.803921 1558613882000000000
> cpu,cpu=cpu1,host=local usage_guest=0,usage_idle=92.156862,usage_iowait=0,usage_irq=0,usage_softirq=0,usage_steal=0,usage_system=3.921568,usage_user=3.921568 1558613882000000000
> cpu,cpu=cpu-total,host=local usage_guest=0,usage_idle=87.623762,usage_iowait=0,usage_irq=0,usage_softirq=0,usage_steal=0,usage_system=6.435643,usage_user=5.940594 1558613882000000000
A line is outputted for each core of the CPU and the total. Values are presented in key=valuepairs with the timestamp last in the row. When writing to STDOUT you can distinguish between tags, which are indexed fields (cpu, host) and value fields (usage_quest, usage_user ...) by a blank space (in our example the space after host=local). The distinction exists because different configuration options are available for the different fields.
Configuring the PostgreSQL Output Plugin
The telegraf.conf file we generated has a section (around line 80) headed with
################################################
# OUTPUT PLUGINS #
################################################
And below this header, the default configuration for the PostgreSQL output plugin is laid out.
[[outputs.postgresql]]
## specify address via a url matching:
## postgres://[pqgotest[:password]]@localhost[/dbname]\
## ?sslmode=[disable|verify-ca|verify-full]
## or a simple string:
## host=localhost user=pqotest password=... sslmode=... dbname=app_production
##
## All connection parameters are optional.
##
## Without the dbname parameter, the driver will default to a database
## with the same name as the user. This dbname is just for instantiating a
## connection with the server and doesn't restrict the databases we are trying
## to grab metrics for.
##
address = "host=localhost user=postgres sslmode=verify-full"
## Store tags as foreign keys in the metrics table. Default is false.
# tags_as_foreignkeys = false
## Template to use for generating tables
## Available Variables:
## {TABLE} - tablename as identifier
## {TABLELITERAL} - tablename as string literal
## {COLUMNS} - column definitions
## {KEY_COLUMNS} - comma-separated list of key columns (time + tags)
## Default template
# table_template = "CREATE TABLE IF NOT EXISTS {TABLE}({COLUMNS})"
## Example for timescaledb
# table_template = "CREATE TABLE {TABLE}({COLUMNS}); SELECT create_hypertable({TABLELITERAL},'time');"
## Schema to create the tables into
# schema = "public"
## Use jsonb datatype for tags
# tags_as_jsonb = false
## Use jsonb datatype for fields
# fields_as_jsonb = false
From the config we can notice several things:
- The top line enables the plugin, the plugin specific config is indented after this line
- There is currently only one parameter configured,
address. The others are commented out - Possible parameters are commented out with a single
#. (tags_as_foreignkeys,table_template,schema,tags_as_jsonb,fields_as_jsonb) - Explanations of the parameters are commented out with a single
##
The commented out parameters also show their default values.
For the first example we'll set the address parameter to a proper connection string to establish a connection to an instance of TimescaleDB or PostgreSQL. All the other parameters will have their default values.
Creating hypertables
The plugin we developed allows the user to configure several parameters. The table_templateparameter defines the SQL to be executed when a new measurement is recorded by Telegraf and the required table doesn't exist in the output database. By default the table_template used is CREATE TABLE IF NOT EXISTS {TABLE}({COLUMNS}) where {TABLE} and {COLUMNS} are placeholders for the name of the table and the column definitions.
Let's update table_template in the config for TimescaleDB:
table_template=`CREATE TABLE IF NOT EXISTS {TABLE}({COLUMNS}); SELECT create_hypertable({TABLELITERAL},'time',chunk_time_interval := '1 week'::interval,if_not_exists := true);`
This way when a new table is created it is converted into a hypertable, with each chunk holding 1 week intervals. Nothing else is needed to use the plugin with TimescaleDB.
Running Telegraf
When we run Telegraf we only need to specify the config file to be used. If we execute
$ telegraf --config telegraf.conf
2019-05-23T13:48:09Z I! Starting Telegraf 1.10.4-with-pg
2019-05-23T13:48:09Z I! Loaded inputs: cpu
2019-05-23T13:48:09Z I! Loaded outputs: postgresql
2019-05-23T13:48:09Z I! Tags enabled: host=local
2019-05-23T13:48:09Z I! [agent] Config: Interval:10s, Quiet:false, Hostname:"local", Flush Interval:10s
In the output you can notice the loaded inputs (cpu) and outputs (postgresql) along with the global tags and the intervals with which the agent will collect the data from the inputs, and flush to the outputs. We can stop the execution of Telegraf after ~10-15 seconds.
Let us now connect to our PostgreSQL instance and inspect the data
$ psql -U postgres -h localhost
The cpu input plugin has one measurement, called cpu, and it's stored in a table of the same name (by default in the public schema). So with the SQL query SELECT * FROM cpu, depending on how long you left Telegraf running you will see the table populated with some values. We can find the average usage per cpu core with SELECT cpu, avg(usage_user) FROM cpu GROUP BY cpu. The output should look like
cpu | avg
-----------+------------------
cpu-total | 8.46385703620795
cpu0 | 12.4343351351033
cpu1 | 4.88380203380203
cpu2 | 12.2718724052057
cpu3 | 4.26716970050303
Adding new Tags or Fields
Your Telegraf configuration can change at any moment. An input plugin can be reconfigured to produce different data, or you may decide to index your data with different tags. Our SQL plugin can dynamically update the created tables with new columns as they appear. The previous configuration we used had no global tags specified other than the host tag. We will now add a new global tag in the configuration. Open the file in any text editor and update the [global_tags] section (around line 18) with:
[global_tags]
location="New York"
This way all metrics collected with the instance of Telegraf running with this config will be tagged with location="New York". If we run Telegraf again, collecting the metrics in TimescaleDB
$ telegraf --config telegraf.conf
And after a while we check on the cpu table in the database
psql> \dS cpu
\dS cpu;
Table "public.cpu"
Column | Type
------------------+--------------------------
time | timestamp with time zone
cpu | text
host | text
usage_steal | double precision
usage_iowait | double precision
usage_guest | double precision
usage_idle | double precision
usage_softirq | double precision
usage_system | double precision
usage_user | double precision
usage_irq | double precision
location | text
The location column was added and it contains "New York" for all rows.
Creating a separate metadata table for tags
The plugin we developed allows the user to select to have the tag sets inserted in a separate table and then referenced via foreign keys in the measurement table. Having the tags in a separate table saves space for high cardinality tag sets, and allows certain queries to be written more efficiently. To enable this change, you need to uncomment the tags_as_foreignkeys parameter in the plugin config (around line 103 in telegraf.conf) and set it to true
## Store tags as foreign keys in the metrics table. Default is false.
tags_as_foreignkeys = true
To better visualize the result we'll drop the existing cpu table from our database.
psql> DROP TABLE cpu;
Now we'll fire Telegraf up again, this time with the config changed to write the tags in a separate table.
$ telegraf --config telegraf.conf
We can turn it off after 20-30 seconds. If we check on the cpu table in the database:
psql> \dS cpu
\dS cpu
Table "public.cpu"
Column | Type
------------------+--------------------------
time | timestamp with time zone
tag_id | integer
usage_irq | double precision
usage_softirq | double precision
usage_system | double precision
usage_iowait | double precision
usage_guest | double precision
usage_user | double precision
usage_idle | double precision
usage_steal | double precision
Notice that the cpu, host and location columns are not there, instead there's a tag_idcolumn. The tag sets are stored in a separate table called cpu_tag:
psql> SELECT * FROM cpu_tag;
tag_id | host | cpu | location
--------+-------+-----------+----------
1 | local | cpu-total | New York
2 | local | cpu0 | New York
3 | local | cpu1 | New York
JSONB column for Tags and Fields
Additionally the tags and fields can be stored as JSONB columns in the database. All you need to do is uncomment the tags_as_jsonb or fields_as_jsonb parameters in telegraf.conf(around line 120) and set them to true. In this example we'll store the fields as separate columns, but the tags as JSON.
## Use jsonb datatype for tags
tags_as_jsonb = true
## Use jsonb datatype for fields
fields_as_jsonb = false
To better visualize the result we'll drop the existing cpu_tag table from our database.
psql> DROP TABLE cpu_tag;
Fire up Telegraf again, and turn it off after 20-30 seconds. Then we check the cpu_tag table:
$ telegraf --config telegraf.conf
psql> SELECT * FROM cpu_tag;
tag_id | tags
--------+-----------------------------------------------------------------------------------
1 | {"cpu": "cpu-total", "host": "local", "location": "New York"}
2 | {"cpu": "cpu0", "host": "local", "location": "New York"}
3 | {"cpu": "cpu1", "host": "local", "location": "New York"}
And instead of having three text columns, one JSONB column is created.
Collecting metrics with the PostgreSQL and TimescaleDB output plugin for Telegraf的更多相关文章
- Logstash:Email output plugin 检查日志中是否还有某些错误信息并发送邮件报警
- PostgreSQL相关的软件,库,工具和资源集合
PostgreSQL相关的软件,库,工具和资源集合. 备份 wal-e - Simple Continuous Archiving for Postgres to S3, Azure, or Swif ...
- TimescaleDB比拼InfluxDB:如何选择合适的时序数据库?
https://www.itcodemonkey.com/article/9339.html 时序数据已用于越来越多的应用中,包括物联网.DevOps.金融.零售.物流.石油天然气.制造业.汽车.太空 ...
- Flink – metrics V1.2
WebRuntimeMonitor .GET("/jobs/:jobid/vertices/:vertexid/metrics", handler(new JobVertexM ...
- Application Metrics With Spring Boot Actuator
转自:https://bartcode.co.uk/2015/01/application-metrics-with-spring-boot-actuator Update 12/2017: It w ...
- Debezium for PostgreSQL to Kafka
In this article, we discuss the necessity of segregate data model for read and write and use event s ...
- SQL_CALC_FOUND_ROWS equivalent in PostgreSQL
https://www.postgresql.org/message-id/1185863074.10580.91.camel%40linda.lfix.co.uk On Tue, 2007-07-3 ...
- JOOQ快速上手(基于springboot 和 postgresql)
是什么 全称Java Object Oriented Querying,基于java开发出来的工具包,主要用于访问关系型数据库. 为什么用 Hibernate对SQL的操作太抽象 JDBC使用太过繁琐 ...
- Filebeat-1.3.1安装和设置(图文详解)(多节点的ELK集群安装在一个节点就好)(以Console Output为例)
前期博客 Filebeat的下载(图文讲解) 前提 Elasticsearch-2.4.3的下载(图文详解) Elasticsearch-2.4.3的单节点安装(多种方式图文详解) Elasticse ...
随机推荐
- uwsgi重启shell脚本
一.概述 工作中使用uwsgi时,每次需要进入到工作目录,去执行uwsgi相关命令,比较繁琐.这里整理了一个uwsgi重启脚本! 根据参考链接,修改了部分内容(定义了变量,修复了一些bug,增加了颜色 ...
- python_协程
协程 问题一: 生成器与函数的区别?生成器分阶段的返回多个值,相当于有多个出口(结果): yield ''' yield # 中断.返回函数值 1.只能在函数中使用 2.会暂停函数执行并且返回表达式结 ...
- 属性动画 补间动画 帧动画 基本使用案例 MD
Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...
- 【1】【leetcode-5】最长回文子串
给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1: 输入: "babad"输出: "bab"注意: " ...
- Python 基础-import 与 from...import....
简单说说python import与from-import- 在python用import或者from-import来导入相应的模块.模块其实就一些函数和类的集合文件,它能实现一些相应的功能,当我们需 ...
- selenium中的元素操作之三大切换(二)
一.窗口切换 使用方法: 1.获取到打开的所有的窗口,句柄handles all_handles = driver.window_handles print(all_handles) 2.获取当前的窗 ...
- MPAndroid 的学习
1.MPAndroid 的github的地址: https://github.com/PhilJay/MPAndroidChart#documentation 2.使用步骤: 在build.gradl ...
- centos8安装chromium浏览器
1/yum install epel* [root@localhost framework]# yum list epl* Last metadata expiration check: 0:57:4 ...
- kali之DVWA
简介 DVWA(Damn Vulnerable Web Application)是一个用来进行安全脆弱性鉴定的PHP/MySQL Web应用,旨在为安全专业人员测试自己的专业技能和工具提供合法的环境, ...
- 基于MUI框架+HTML5PLUS 开发 iOS和Android 应用程序(APP)
目录 事前准备 创建项目 利用MUI写一个简单的页面 关于文件打包 事前准备 # 软件 HBuilder X Web开发IDE 下载地址:https://www.dcloud.io/hbuilderx ...