Follow up for "Find Minimum in Rotated Sorted Array":
What if duplicates are allowed?

Would this affect the run-time complexity? How and why?

Suppose a sorted array is rotated at some pivot unknown to you beforehand.

(i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2).

Find the minimum element.

The array may contain duplicates.

153. Find Minimum in Rotated Sorted Array 的拓展,这个题里允许有重复的元素。原来是依靠中间和边缘元素的大小关系,来判断哪一半是有序的。而现在因为重复元素的出现,如果遇到中间和边缘相等的情况,就无法判断哪边有序,因为哪边都有可能有序。假设原数组是{1,2,3,3,3,3,3},那么旋转之后有可能是{3,3,3,3,3,1,2},或者{3,1,2,3,3,3,3},判断左边缘和中心的时候都是3,就不知道应该截掉哪一半。解决的办法是对边缘移动一步,直到边缘和中间不在相等或者相遇,这就导致了会有不能切去一半的可能。所以最坏情况就会出现每次移动一步,总共移动n,算法的时间复杂度j: O(logn) ~ O(n)。

Java:

public int findMin(int[] num) {
if(num == null || num.length==0)
return 0;
int l = 0;
int r = num.length-1;
int min = num[0];
while(l<r-1)
{
int m = (l+r)/2;
if(num[l]<num[m])
{
min = Math.min(num[l],min);
l = m+1;
}
else if(num[l]>num[m])
{
min = Math.min(num[m],min);
r = m-1;
}
else
{
l++;
}
}
min = Math.min(num[r],min);
min = Math.min(num[l],min);
return min;
}

Python:

class Solution(object):
def findMin(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
left, right = 0, len(nums) - 1
while left < right:
mid = left + (right - left) / 2 if nums[mid] == nums[right]:
right -= 1
elif nums[mid] < nums[right]:
right = mid
else:
left = mid + 1 return nums[left]

Python:

class Solution2(object):
def findMin(self, nums):
"""
:type nums: List[int]
:rtype: int
"""
left, right = 0, len(nums) - 1
while left < right and nums[left] >= nums[right]:
mid = left + (right - left) / 2 if nums[mid] == nums[left]:
left += 1
elif nums[mid] < nums[left]:
right = mid
else:
left = mid + 1 return nums[left]  

C++:

class Solution {
public:
int findMin(vector<int> &nums) {
if (nums.empty()) return 0;
int left = 0, right = nums.size() - 1, res = nums[0];
while (left < right - 1) {
int mid = left + (right - left) / 2;
if (nums[left] < nums[mid]) {
res = min(res, nums[left]);
left = mid + 1;
} else if (nums[left] > nums[mid]) {
res = min(res, nums[right]);
right = mid;
} else ++left;
}
res = min(res, nums[left]);
res = min(res, nums[right]);
return res;
}
};

类似题目:

[LeetCode] 33. Search in Rotated Sorted Array 在旋转有序数组中搜索

[LeetCode] 81. Search in Rotated Sorted Array II 在旋转有序数组中搜索 II

[LeetCode] 153. Find Minimum in Rotated Sorted Array 寻找旋转有序数组的最小值

All LeetCode Questions List 题目汇总

  

  

[LeetCode] 154. Find Minimum in Rotated Sorted Array II 寻找旋转有序数组的最小值 II的更多相关文章

  1. LeetCode 153. Find Minimum in Rotated Sorted Array (在旋转有序数组中找到最小值)

    Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e. ...

  2. [LeetCode] 154. Find Minimum in Rotated Sorted Array II 寻找旋转有序数组的最小值之二

      Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i. ...

  3. [LeetCode] Find Minimum in Rotated Sorted Array II 寻找旋转有序数组的最小值之二

    Follow up for "Find Minimum in Rotated Sorted Array":What if duplicates are allowed? Would ...

  4. leetcode 154. Find Minimum in Rotated Sorted Array II --------- java

    Follow up for "Find Minimum in Rotated Sorted Array":What if duplicates are allowed? Would ...

  5. [LeetCode#154]Find Minimum in Rotated Sorted Array II

    The question: Follow up for "Find Minimum in Rotated Sorted Array":What if duplicates are ...

  6. [LeetCode] 154. Find Minimum in Rotated Sorted Array II_Hard

    Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e. ...

  7. LeetCode 154. Find Minimum in Rotated Sorted Array II寻找旋转排序数组中的最小值 II (C++)

    题目: Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. ( ...

  8. Java for LeetCode 154 Find Minimum in Rotated Sorted Array II

    Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...

  9. LeetCode 154.Find Minimum in Rotated Sorted Array II(H)(P)

    题目: Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. ( ...

随机推荐

  1. 【Audiophobia UVA - 10048 】【Floyd算法】

    题目大意:从a城市到b城市的路径中,尽可能让一路上的最大噪音最小. 题目思路:设d [ i ][ j ]表示 i 到 j 的最大噪音的最小值. 那么d [ i ][ j ] = min( d[ i ] ...

  2. Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation(知识图谱)

    知识图谱(Knowledge Graph,KG)可以理解成一个知识库,用来存储实体与实体之间的关系.知识图谱可以为机器学习算法提供更多的信息,帮助模型更好地完成任务. 在推荐算法中融入电影的知识图谱, ...

  3. Jquery的$(document).click() 在iphone手机上失效的问题

    click事件和 touchstart事件共存 安卓IOS手机都适用 $(document).on("click touchstart", ".demo", f ...

  4. 基于qemu和unicorn的Fuzz技术分析

    前言 本文主要介绍如果使用 qemu 和 unicorn 来搜集程序执行的覆盖率信息以及如何把搜集到的覆盖率信息反馈到 fuzzer 中辅助 fuzz 的进行. AFL Fork Server 为了后 ...

  5. No Compiler is Provided in this environment Perhaps you are running on JRE rather than a JDK

    问题描述: 在使用Jenkins打包的时候,抛出这样的错,但JDK和Maven都是已经安装,没问题了的.其中Jenkins用的Pipline流水线来部署项目. 问题解决: 在使用Pipline部署项目 ...

  6. Codeforces Round #605 (Div. 3) E. Nearest Opposite Parity(最短路)

    链接: https://codeforces.com/contest/1272/problem/E 题意: You are given an array a consisting of n integ ...

  7. 持续集成学习4 jenkins常见功能

    一.节点选择 1.yum安装jdk yum install -y java-1.8.0 java-1.8.0-openjdk-devel 2.节点选择有三种方式 a.通过系统自带功能限制任务只能在这个 ...

  8. JS开发——文件夹的上传和下载

    文件夹上传:从前端到后端 文件上传是 Web 开发肯定会碰到的问题,而文件夹上传则更加难缠.网上关于文件夹上传的资料多集中在前端,缺少对于后端的关注,然后讲某个后端框架文件上传的文章又不会涉及文件夹. ...

  9. javascript 终极循环方法for... of ..推荐

    js目前有很多的循环方法,如for, forEach,  for .. in,  for of 等等,而在ES6里面,我们又增加了一些数据结构,比如set,map,Symbol等. 那么我们该选取哪一 ...

  10. 49、Spark Streaming基本工作原理

    一.大数据实时计算介绍 1.概述 Spark Streaming,其实就是一种Spark提供的,对于大数据,进行实时计算的一种框架.它的底层,其实,也是基于我们之前讲解的Spark Core的. 基本 ...