分析

这道题看上去很恶心,实际上只用记录四坨东西就能打DP了:y坐标最小的向上射的点、y坐标最大的向下射的点、y坐标最大和最小的向右射的点,转移显然。注意,如果该状态的值为零就可以略过,否则会超时。

#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
int a[60][3],f[2][57][57][57][57],xz[55],xy[55],ys[55],yx[55];
int n,m,tot;
void q(int l,int r)
{
int i=l,j=r,mid=a[(l+r)/2][1],e;
while(i<j)
{
while(a[i][1]<mid) i++;
while(a[j][1]>mid) j--;
if(i<=j)
{
e=a[i][1];
a[i][1]=a[j][1];
a[j][1]=e;
e=a[i][2];
a[i][2]=a[j][2];
a[j][2]=e;
i++;
j--;
}
}
if(i<r) q(i,r);
if(l<j) q(l,j);
}
void q1(int l,int r)
{
int i=l,j=r,mid=a[(l+r)/2][2],e;
while(i<j)
{
while(a[i][2]<mid) i++;
while(a[j][2]>mid) j--;
if(i<=j)
{
e=a[i][1];
a[i][1]=a[j][1];
a[j][1]=e;
e=a[i][2];
a[i][2]=a[j][2];
a[j][2]=e;
i++;
j--;
}
}
if(i<r) q1(i,r);
if(l<j) q1(l,j);
}
int main()
{
cin>>n;
int i,j,k,l,p,x,y;
for(i=1;i<=n;i++)
{
cin>>a[i][1]>>a[i][2];
xz[i]=xy[i]=ys[i]=yx[i]=56;
}
xz[0]=xy[0]=ys[0]=yx[0]=56;
q1(1,n);
tot=0;
p=-2000000000;
for(i=1;i<=n;i++)
{
if(a[i][2]==p)
{
a[i][2]=tot;
}
else
{
p=a[i][2];
a[i][2]=++tot;
}
}
q(1,n);
tot=0;
p=-2000000000;
for(i=1;i<=n;i++)
{
if(a[i][1]==p)
{
a[i][1]=tot;
}
else
{
p=a[i][1];
a[i][1]=++tot;
}
if(xz[a[i][2]]==56)
xz[a[i][2]]=a[i][1];
else
xz[a[i][2]]=min(xz[a[i][2]],a[i][1]); if(xy[a[i][2]]==56)
xy[a[i][2]]=a[i][1];
else
xy[a[i][2]]=max(xy[a[i][2]],a[i][1]); if(yx[a[i][1]]==56)
yx[a[i][1]]=a[i][2];
else
yx[a[i][1]]=min(yx[a[i][1]],a[i][2]); if(ys[a[i][1]]==56)
ys[a[i][1]]=a[i][2];
else
ys[a[i][1]]=max(ys[a[i][1]],a[i][2]);
}
int mo=998244353;
f[0][n+1][0][0][n+1]=1;
int ans=0;
for(i=0;i<=n;i++)
{
memset(f[(i+1)%2],0,sizeof(f[(i+1)%2]));
for(int up=0;up<=n+1;up++)
for(int down=0;down<=n+1;down++)
for(int mx=0;mx<=n+1;mx++)
for(int mn=0;mn<=n+1;mn++)
if(f[i%2][up][down][mx][mn])
{
int sum=0;
int t=f[i%2][up][down][mx][mn];
//上
if(a[i+1][2]==ys[a[i+1][1]] && mx<a[i+1][2])
(f[(i+1)%2][min(up,a[i+1][2])][down][mx][mn]+=t)%=mo,(sum+=t)%=mo;
//下
if(a[i+1][2]==yx[a[i+1][1]] && mn>a[i+1][2])
(f[(i+1)%2][up][max(down,a[i+1][2])][mx][mn]+=t)%=mo,(sum+=t)%=mo;
//左
if(a[i+1][1]==xz[a[i+1][2]] && up>a[i+1][2] && down<a[i+1][2])
(f[(i+1)%2][up][down][mx][mn]+=t)%=mo,(sum+=t)%=mo;
//右
if(a[i+1][1]==xy[a[i+1][2]])
(f[(i+1)%2][up][down][max(mx,a[i+1][2])][min(mn,a[i+1][2])]+=t)%=mo,(sum+=t)%=mo;
if(i==n-1) ans=(ans+sum)%mo;
}
}
cout<<ans;
}

【C】题解 (五校联考3day2)的更多相关文章

  1. 【五校联考3day2】C

    題意: 現有一平面直角坐標系,有n個點,每一個點必須向某一個方向發射射線,且任意一條射線必須與某一條坐標軸平行.定義一種發射射線的方案是合法的,則方案必須滿足: 1.沒有一條射線交叉 2.沒有一條射線 ...

  2. 【五校联考1day2】JZOJ2020年8月12日提高组T2 我想大声告诉你

    [五校联考1day2]JZOJ2020年8月12日提高组T2 我想大声告诉你 题目 Description 因为小Y 是知名的白富美,所以自然也有很多的追求者,这一天这些追求者打算进行一次游戏来踢出一 ...

  3. 【五校联考1day2】JZOJ2020年8月12日提高组T1 对你的爱深不见底

    [五校联考1day2]JZOJ2020年8月12日提高组T1 对你的爱深不见底 题目 Description 出乎意料的是,幸运E 的小R 居然赢了那个游戏.现在欣喜万分的小R 想要写一张明信片给小Y ...

  4. 【宝藏】题解(五校联考3day1)

    分析 如果打爆搜的话可以拿60分. 首先知道期望是可以累加的,即i通过j去到k的期望,等于i去到j的期望加j去到k的期望. 所以令d[i]表示i的出度,F[i]表示从i到i的父亲的期望,G[i]表示i ...

  5. NOIP2016提高A组五校联考3总结

    第一题,本来一开始就想到了数位dp,结果脑残地打了十几个转移方程,总是调试不出来,一气之下放弃了. 调第一题几乎调了整节比赛,第二第三都没它. 第二题连边找联通块. 第三题题解都打了三页,看都不想看. ...

  6. 【五校联考5day1】登山

    题目 描述 题目大意 给你一个n∗nn*nn∗n的网格图.从(0,0)(0,0)(0,0)开始,每次只可以向右或向上移动一格,并且不能越过对角线(即不能为x<yx<yx<y). 网格 ...

  7. 【2020五校联考NOIP #2】矩阵

    咕咕咕到现在~ 题面传送门 题意: 给出一个 \(n\times n\) 的矩阵 \(A\).要你求有多少个 \(n\times n\) 的矩阵 \(B\) 满足: 每一行都是 \(1\) 到 \(n ...

  8. 五校联考 running (欧拉函数)

    题面 \(solution:\) 讲真吧,这道题真的出得,嗯,太恐怖了.考场上这道题真的把我看懵了,这道题以前是见过的,但欧拉函数?我学过吗?一道容斥都要超时的题目,我都要为我自己点根香了,拿着gcd ...

  9. 五校联考R1 Day1T3 平面图planar(递推 矩阵快速幂)

    题目链接 我们可以把棱柱拆成有\(n\)条高的矩形,尝试递推. 在计算的过程中,第\(i\)列(\(i\neq n\))只与\(i-1\)列有关,称\(i-1\)列的上面/下面为左上/左下,第\(i\ ...

随机推荐

  1. .net 部署到服务端IIS,Process调用exe程序无法运行问题解决

    场景: 开发某一功能将html内容转换为pdf,采用第三方插件wkhtmltopdf.exe进行转换.在本地调试正常运行,部署到服务端后文件没有正常生成. IIS中,Process打不开cmd程序,程 ...

  2. 【Qt开发】将内存图像数据封装成QImage V2

    如何将内存图像数据封装成QImage 当采用Qt开发相机数据采集软件时,势必会遇到采集内存图像并进行处理(如缩放.旋转)操作.如果能够将内存图像数据封装成QImage,则可以利用QImage强大的图像 ...

  3. spring -boot定时任务 quartz 基于 JobDetailFactoryBean实现

    这个有点小问题 尚未解决  后期优化 基于 JobDetailFactoryBean实现 依赖包 <dependencies> <dependency> <groupId ...

  4. JPA-style positional param was not an integral ordinal 异常

    JPA-style positional param was not an integral ordinal 多是sql之间的空格问题,或者sql拼接问题. 字符串与字符串直接相加要加空格

  5. 第十一周总结 继承、this和super的区别和用法、方法的重写和重载

    一.继承 1.子类继承父类,通过一个关键字 extends 2.子类的对象可以调用父类中的(public protected)属性和方法 当作自己的来使用 3.子类可以添加自己独有的属性和方法 4.子 ...

  6. 【Linux内核】编译与配置内核(arm)

    ARM平台使用的内核 (1)清除原有的配置与中间文件 make distclean(2)配置内核 make menuconfig ARCH=arm(3)编译内核 make uImage ARCH=ar ...

  7. [19/10/14-星期一] Python中的对象和类

    一.面向对象 ## 什么是对象? - 对象是内存中专门用来存储数据的一块区域. - 对象中可以存放各种数据(比如:数字.布尔值.代码) - 对象由三部分组成: 1.对象的标识(id) 2.对象的类型( ...

  8. ubuntu14 teamviewer使用

    一. 软件安装 1.1. 下载.deb文件 下载13版本的,不要下载最新版本的 1.2. 环境配置 <1>. sudo dpkg --add-architecture i386 <2 ...

  9. HDU-4857 逃生(反向拓扑排序 + 逆向输出)

    逃生 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submissi ...

  10. kotlin学习(7)高阶函数

    高阶函数 以另一个函数作为参数或者返回值的函数被称为高阶函数. 函数类型 //隐式声明(省略了变量类型) val sum = (x:Int, y:Int -> x+y) val action = ...