ICML 2019 分析

Word Embeddings

Understanding the Origins of Bias in Word Embeddings

Popular word embedding algorithms exhibit stereotypical biases, such as gender bias.

The widespread use of these algorithms in machine learning systems can amplify stereotypes in important contexts.

Although some methods have been developed to mitigate this problem, how word embedding biases arise during training is poorly understood.

In this work we develop a technique to address this question.

Given a word embedding, our method reveals how perturbing the training corpus would affect the resulting embedding bias.

By tracing the origins of word embedding bias back to the original training documents, one can identify subsets of documents whose removal would most reduce bias.

We demonstrate our methodology on Wikipedia and New York Times corpora, and find it to be very accurate.

《理解单词嵌入中偏见的起源》

常用的嵌入词算法表现出典型的偏见,如性别偏见。

Analogies Explained: Towards Understanding Word Embeddings

Word embeddings generated by neural network methods such as word2vec (W2V) are well known to exhibit seemingly linear behaviour, e.g. the embeddings of analogy woman is to queen as man is to king'' approximately describe a parallelogram.

This property is particularly intriguing since the embeddings are not trained to achieve it.

Several explanations have been proposed, but each introduces assumptions that do not hold in practice.

We derive a probabilistically grounded definition of paraphrasing that we re-interpret as word transformation, a mathematical description of \(w_x\) is to \(w_y\)''.

From these concepts we prove existence of linear relationship between W2V-type embeddings that underlie the analogical phenomenon, identifying explicit error terms.

《类比解释:对嵌入词的理解》

神经网络方法(如word2vec(w2v))生成的嵌入词通常表现出看似线性的行为,例如,将女性嵌入到皇后中,就像男人对国王“近似描述一个平行四边形”。

这种特性特别有趣,因为嵌入没有经过训练来实现它。

已经提出了几种解释,但每种解释都引入了在实践中不成立的假设。

我们推导了一个基于概率的释义定义,我们将其重新解释为单词转换,一个 \(w_x\) 到 \(w_y\) 的数学描述。

从这些概念中,我们证明了W2V类型嵌入之间存在线性关系,这些嵌入构成了类比现象的基础,识别了显式错误项。

Humor in Word Embeddings: Cockamamie Gobbledegook for Nincompoops

While humor is often thought to be beyond the reach of Natural Language Processing, we show that several aspects of single-word humor correlate with simple linear directions in Word Embeddings.

In particular:

(a) the word vectors capture multiple aspects discussed in humor theories from various disciplines;

(b) each individual's sense of humor can be represented by a vector, which can predict differences in people's senses of humor on new, unrated, words; and

(c) upon clustering humor ratings of multiple demographic groups, different humor preferences emerge across the different groups.

Humor ratings are taken from the work of Engelthaler and Hills (2017) as well as from an original crowdsourcing study of 120,000 words.

Our dataset further includes annotations for the theoretically-motivated humor features we identify.

《文字嵌入中的幽默:繁琐的戈布尔德古克》

虽然幽默通常被认为是超出了自然语言处理的范围,但我们发现,单词幽默的几个方面与嵌入单词的简单线性方向相关。

特别是:

(a)词汇载体从各个学科捕获幽默理论中讨论的多个方面;

(b)每个人的幽默感可由一个矢量表示,该矢量可预测人们在新的、未分级的词语上的幽默感差异;及

(c)通过对多个人口统计学群体的幽默评分进行聚类,不同群体之间会出现不同的幽默偏好。

幽默评分取自Engelthaler和Hills(2017)的作品,以及120000字的原始众包研究。

我们的数据集还包括对我们所识别的理论性幽默特征的注释。

ICML 2019 分析的更多相关文章

  1. ACL 2019 分析

    ACL 2019 分析 word embedding 22篇! Towards Unsupervised Text Classification Leveraging Experts and Word ...

  2. AAAI 2019 分析

    AAAI 2019 分析 Google Scholar 订阅 CoKE : Word Sense Induction Using Contextualized Knowledge Embeddings ...

  3. ICML 2019论文录取Top100:谷歌霸榜

    [导读]人工智能顶级会议ICML 2019发布了今年论文录取结果.提交的3424篇论文中,录取了774篇,录取率为22.6%,较去年有所降低.从录取论文数量来看,谷歌成为今年最大赢家,紧随其后的是MI ...

  4. 《Domain Agnostic Learning with Disentangled Representations》ICML 2019

    这篇文章是ICML 2019上一篇做域适应的文章,无监督域适应研究的问题是如何把源域上训练的模型结合无lable的目标域数据使得该模型在目标域上有良好的表现.之前的研究都有个假设,就是数据来自哪个域是 ...

  5. 计算机电子书 2019 BiliDrive 备份

    下载方式 pip install BiliDriveEx bdex download <link> 链接 文档 链接 传智播客轻松搞定系列 C.C++.Linux.设计模式.7z (33. ...

  6. 2019年度【计算机视觉&机器学习&人工智能】国际重要会议汇总

    简介 每年全世界都会举办很多计算机视觉(Computer Vision,CV). 机器学习(Machine Learning,ML).人工智能(Artificial Intelligence ,AI) ...

  7. 因果推理的春天-实用HTE(Heterogeneous Treatment Effects)论文github收藏

    一直以来机器学习希望解决的一个问题就是'what if',也就是决策指导: 如果我给用户发优惠券用户会留下来么? 如果患者服了这个药血压会降低么? 如果APP增加这个功能会增加用户的使用时长么? 如果 ...

  8. zz2019年主动学习有哪些进展?答案在这三篇论文里

    2019年主动学习有哪些进展?答案在这三篇论文里 目前推广应用的机器学习方法或模型主要解决分类问题,即给定一组数据(文本.图像.视频等),判断数据类别或将同类数据归类等,训练过程依赖于已标注类别的训练 ...

  9. zz【清华NLP】图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐

    [清华NLP]图神经网络GNN论文分门别类,16大应用200+篇论文最新推荐 图神经网络研究成为当前深度学习领域的热点.最近,清华大学NLP课题组Jie Zhou, Ganqu Cui, Zhengy ...

随机推荐

  1. ThinkPHP验证器验证规则编码要点

    首先验证器要继承框架的think\Validate类. 1.验证规则是一个父类的rule属性,是一个数组. 2.数组的键名是验证字段标识,值是验证规则.多个验证规则要用|分隔,不能有空格,否则可能会验 ...

  2. CSS3 @keyframes 实现匀速旋转魔方(搬运工)

    原博文 * https://www.cnblogs.com/shihao905/p/6208324.html * html <div id="wrap"> <di ...

  3. c#委托(Delegates)--基本概念及使用

    在我这菜鸟理解上,委托就是可以用方法名调用另一方法的便捷方法,可以简化switch等语句的重复.最近做项目的时候恰好需要用到委托,便来复习及学习委托的使用.嗯...本人以前并没有用过,只是稍微知道而已 ...

  4. 【应用容器引擎】Docker笔记

    一.Docker是什么? Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的linux机器上,也可以实现虚拟化.它是一个轻量级容器技 ...

  5. linux设置用户自定义别名

    设置用户自定义别名 首先进入当前用户家目录 我这里是 root 查看隐藏文件 注意到.bashrc文件,修改此可以用户自定义别名 保存退出,读入.bashrc设定 看看alias里有没 以后此用户就永 ...

  6. vue打包后element-ui部分样式(图标)异常问题

    vue项目使用element-ui组件,打包后部分样式(上下左右箭头)异常,变成方框了. 页面报warn错误,有个字体找不到. 解决办法:在build文件夹下找到utils.js,加上一行public ...

  7. php判断变量是否为数字is_numeric()

    is_numeric — 检测变量是否为数字或数字字符 <?php $tests = array( "31", 1380, "1e4", "no ...

  8. 通过telnet自动下载cfg配置文件

    源代码如下: import telnetlib import logging import datetime import csv import time def telnetfunc(enbid, ...

  9. JAVA利用递归的方法删除一个文件夹以及文件夹下所有的子文件

    public static boolean deleteFolder(String url) { File file = new File(url); if (!file.exists()) { re ...

  10. 新建的COM组件中没有 MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)

    创建ATL组件之后,添加简单ATL对象,添加对话框资源,随后发现没有m_hWnd句柄,不响应初始化函数. 于是重新创建ATL组件,之后添加ATL控件,添加对话框资源,有m_hWnd句柄,但仍然不响应初 ...