Card Collector AtCoder - 5168(二分图匹配的HALL定理)
题意:
给定一个H行W列的矩阵,在矩阵的格点上放带权值的卡片(一个点上能放多张)。
现在从每行每列各拿走一张卡片(没有可以不拿),求可以拿到的最大权值。
卡片数N<=1e5,H,W<=1e5
思路:
显然可以构造成一个最大费用流模型:每张卡片到它对应的行列各有一条费用0,容量1的边;源点到每张卡片有一条费用为卡片权值,容量1的边;每个行列到汇点有一条费用0,容量1的边。但是边数有5e5,应该会超时吧?
观察这个图发现除去源点和汇点是一张二分图,想到是否可以利用二分图的性质简化问题。
手动模拟一波发现好像只要贪心地从大到小拿,能拿则拿,那么就能得到最佳答案。如何检测是否还能拿呢?
HALL定理:如果一个二分图上,左部|X|<=右部|Y|,如果左部点的任意一个子集U,U相连边对应右部的子集V都有|U|<=|V|,那么这个二分图有最大匹配|X|。
每次拿走点相当于在U中增加点,在V中增加边,用并查集维护一下集合的大小即可。
- 所在行列在同个集合中,直接判断这个集合是否满足条件
- 所在行列不在同一个集合中,那么判断这两个集合合并后是否满足条件,若是则合并
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=2e5+5;
struct node{
int r,c,a;
friend bool operator<(node a,node b){
return a.a>b.a;
}
}st[maxn];
int fa[maxn],S[maxn],T[maxn];
int n,H,W;
int init(){
for(int i=1;i<=H+W;i++){
fa[i]=i;
T[i]=1;
}
}
int find(int x){
return x==fa[x]?x:fa[x]=find(fa[x]);
}
int main(){
cin>>n>>H>>W;
init();
for(int i=1;i<=n;i++){
scanf("%d%d%d",&st[i].r,&st[i].c,&st[i].a);
}
sort(st+1,st+1+n);
ll ans=0;
for(int i=1;i<=n;i++){
// printf("%d %d %d\n",st[i].r,st[i].c,st[i].a);
int fr=find(st[i].r),fc=find(H+st[i].c);
if(fr==fc){//两个在同一集合内
if(T[fc]>=S[fc]+1){
S[fc]++;
ans=ans+st[i].a;
}
}
else{//两个不在同一集合内,要合并
if(T[fr]+T[fc]>=S[fr]+S[fc]+1){
fa[fr]=fc;
T[fc]+=T[fr];
S[fc]=S[fr]+S[fc]+1;
ans=ans+st[i].a;
}
}
}
printf("%lld\n",ans);
}
Card Collector AtCoder - 5168(二分图匹配的HALL定理)的更多相关文章
- 【CF981F】Round Marriage(二分答案,二分图匹配,Hall定理)
[CF981F]Round Marriage(二分答案,二分图匹配,Hall定理) 题面 CF 洛谷 题解 很明显需要二分. 二分之后考虑如果判定是否存在完备匹配,考虑\(Hall\)定理. 那么如果 ...
- 关于Hall定理的学习
基本定义 \(Hall\) 定理是二分图匹配的相关定理 用于判断二分图是否存在完美匹配 存在完美匹配的二分图即满足最大匹配数为 \(min(|X|,|Y|)\) 的二分图,也就是至少有一边的点全部被匹 ...
- BZOJ1135 LYZ(POI2009) Hall定理+线段树
做这个题之前首先要了解判定二分图有没有完备匹配的Hall定理: 那么根据Hell定理,如果任何一个X子集都能连大于等于|S|的Y子集就可以获得完备匹配,那么就是: 题目变成只要不满足上面这个条件就能得 ...
- loj#6062. 「2017 山东一轮集训 Day2」Pair hall定理+线段树
题意:给出一个长度为 n的数列 a和一个长度为 m 的数列 b,求 a有多少个长度为 m的连续子数列能与 b匹配.两个数列可以匹配,当且仅当存在一种方案,使两个数列中的数可以两两配对,两个数可以配对当 ...
- AtCoder AGC037D Sorting a Grid (二分图匹配)
题目链接 https://atcoder.jp/contests/agc037/tasks/agc037_d 题解 这场D题终于不像AGC032D和AGC036D一样神仙了-- 还是可做的吧 虽然考场 ...
- Hall定理 二分图完美匹配
充分性证明就先咕了,因为楼主太弱了,有一部分没看懂 霍尔定理内容 二分图G中的两部分顶点组成的集合分别为X, Y(假设有\(\lvert X \rvert \leq \lvert Y \rvert\) ...
- @atcoder - Japanese Student Championship 2019 Qualification - E@ Card Collector
目录 @description@ @solution@ @accepted code@ @details@ @description@ N 个卡片放在 H*W 的方格图上,第 i 张卡片的权值为 Ai ...
- AtCoder Regular Contest 092 C - 2D Plane 2N Points(二分图匹配)
Problem Statement On a two-dimensional plane, there are N red points and N blue points. The coordina ...
- (转)二分图匹配匈牙利算法与KM算法
匈牙利算法转自于: https://blog.csdn.net/dark_scope/article/details/8880547 匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名 ...
随机推荐
- java_第一年_JavaWeb(10)
JavaWeb的两种开发模式 JSP+JavaBean框架:JavaBean负责封装数据.提供方法,JSP负责处理用户请求和显示数据:只能开发较为简单的业务: JSP+JavaBean+Servlet ...
- Django中ORM的聚合索引
Django中ORM的聚合索引 在Django中,聚合函数是通过aggregate方法实现的,aggregate方法返回的结果是一个字典 在使用时需要先导入模块from django.db.mod ...
- python 重点理论知识点
Python多线程 GIL blablabla concurrent blablabla 简单地说就是作为可能是仅有的支持多线程的解释型语言(perl的多线程是残疾,PHP没有多线程),Python的 ...
- PHP实现简单的万年历
<?php /*********************** *** 功能:万年历 *** *** 时间:2015/05/23 *** ***********************/ //1. ...
- 获取请求头中User-Agent工具类
public class AgentUserKit { private static String pattern = "^Mozilla/\\d\\.\\d\\s+\\(+.+?\\)&q ...
- Linux压缩、解压
gzip压缩: 归档,压缩,yourFloder文件夹生成yourName.tar.gz: - tar -zcvf yourName.tar.gz yourFloder 解压yourName.tar. ...
- 案例 element 表单名两端对齐
>>> .el-form-item label:after { content: ""; display: inline-block; width: 100%; ...
- Linux安装postgresql及基础操作
安装环境说明 系统环境说明 [root@slave1 ~]# cat /etc/redhat-release CentOS Linux release 7.4.1708 (Core) [root@sl ...
- Nginx优化_定义对静态页面的缓存时间
修改Nginx配置文件,定义对静态页面的缓存时间 proxy ]# vim /usr/local/nginx/conf/nginx.conf server { listen 80; server_na ...
- Spring Cloud Stream监听已存在的Queues/Exchanges
环境准备 rabbitmq已运行,端口5672,控制台web端口15672,用户名密码guest/guest 引入spring cloud stream依赖 compile('org.springfr ...