Given the relations of all the activities of a project, you are supposed to find the earliest completion time of the project.

Input Specification:

Each input file contains one test case. Each case starts with a line containing two positive integers N (≤100), the number of activity check points (hence it is assumed that the check points are numbered from 0 to N−1), and M, the number of activities. Then M lines follow, each gives the description of an activity. For the i-th activity, three non-negative numbers are given: S[i], E[i], and L[i], where S[i] is the index of the starting check point, E[i] of the ending check point, and L[i] the lasting time of the activity. The numbers in a line are separated by a space.

Output Specification:

For each test case, if the scheduling is possible, print in a line its earliest completion time; or simply output "Impossible".

Sample Input 1:

9 12
0 1 6
0 2 4
0 3 5
1 4 1
2 4 1
3 5 2
5 4 0
4 6 9
4 7 7
5 7 4
6 8 2
7 8 4

Sample Output 1:

18

Sample Input 2:

4 5
0 1 1
0 2 2
2 1 3
1 3 4
3 2 5

Sample Output 2:

Impossible

我的答案
 #include <stdio.h>
#include <stdlib.h>
#include <unistd.h> #define ERROR -1
#define false 0
#define true 1
#define MaxVertexNum 100
#define INFINITY 65535
#define MaxQueue 100
typedef int Vertex;
typedef int WeightType;
typedef int bool; //边
typedef struct ENode *PtrToENode;
struct ENode {
Vertex V1, V2;
WeightType Weight;
};
typedef PtrToENode Edge; //邻接点
typedef struct AdjVNode *PtrToAdjVNode;
struct AdjVNode {
Vertex AdjV; //下标
WeightType Weight; //边权重
PtrToAdjVNode Next; //指向下一个邻接点
}; //顶点
typedef struct VNode {
PtrToAdjVNode FirstEdge; //边表头指针
// DataType Data; //存顶点的户数据
}AdjList[MaxVertexNum]; //图结点
typedef struct GNode *PtrToGNode;
struct GNode {
int Nv;
int Ne;
AdjList G;
};
typedef PtrToGNode LGraph; struct QNode {
Vertex Data[MaxQueue];
int rear;
int front;
};
typedef struct QNode *Queue; int IsEmptyQ(Queue PtrQ)
{
return (PtrQ->front == PtrQ->rear);
} void AddQ(Queue PtrQ, Vertex item)
{
if((PtrQ->rear+)%MaxQueue == PtrQ->front) {
printf("Queue full");
return;
}
PtrQ->rear = (PtrQ->rear+)%MaxQueue;
PtrQ->Data[PtrQ->rear] = item;
} Vertex DeleteQ(Queue PtrQ)
{
if(PtrQ->front == PtrQ->rear) {
printf("Queue Empty");
return -;
} else {
PtrQ->front = (PtrQ->front+)%MaxQueue;
return PtrQ->Data[PtrQ->front];
}
} LGraph CreateGraph(int VertexNum)
{
Vertex V;
LGraph Graph; Graph = (LGraph)malloc(sizeof(struct GNode));
Graph->Nv = VertexNum;
Graph->Ne = ; for(V=;V<Graph->Nv;V++)
Graph->G[V].FirstEdge = NULL; return Graph;
} void InsertEdge(LGraph Graph, Edge E)
{
PtrToAdjVNode NewNode; //有向边
NewNode = (PtrToAdjVNode)malloc(sizeof(struct AdjVNode));
NewNode->AdjV = E->V2;
NewNode->Weight = E->Weight;
//向V1插入V2
NewNode->Next = Graph->G[E->V1].FirstEdge;
Graph->G[E->V1].FirstEdge = NewNode;
} LGraph BuildGraph()
{
LGraph Graph;
Edge E;
int Nv, i; scanf("%d", &Nv);
Graph = CreateGraph(Nv); scanf(" %d\n", &(Graph->Ne));
if(Graph->Ne != ) {
E = (Edge)malloc(sizeof(struct ENode));
for(i=;i<Graph->Ne;i++) {
scanf("%d %d %d\n", &E->V1, &E->V2, &E->Weight);
InsertEdge(Graph, E);
}
} return Graph;
} void PrintGraph(LGraph Graph)
{
Vertex V;
PtrToAdjVNode W;
for(V=;V<Graph->Nv;V++) {
printf("%d:", V);
for(W=Graph->G[V].FirstEdge;W;W=W->Next) {
printf("[%3d %3d] ", W->AdjV, W->Weight);
}
printf("\n");
}
} /* 邻接表存储 - 拓扑排序算法 */
bool TopSort( LGraph Graph, Vertex TopOrder[], Vertex Earliest[])
{ /* 对Graph进行拓扑排序, TopOrder[]顺序存储排序后的顶点下标 */
int Indegree[MaxVertexNum], cnt;
Vertex V;
PtrToAdjVNode W; Queue Q = (Queue)malloc(sizeof(struct QNode)*( Graph->Nv )); /* 初始化Indegree[] */
for (V=; V<Graph->Nv; V++)
Indegree[V] = ; /* 遍历图,得到Indegree[] */
for (V=; V<Graph->Nv; V++)
for (W=Graph->G[V].FirstEdge; W; W=W->Next)
Indegree[W->AdjV]++; /* 对有向边<V, W->AdjV>累计终点的入度 */ /* 将所有入度为0的顶点入列 */
for (V=; V<Graph->Nv; V++)
if ( Indegree[V]== ) {
AddQ(Q, V);
Earliest[V] = ; //起点为0
} /* 下面进入拓扑排序 */
cnt = ;
while( !IsEmptyQ(Q) ){
V = DeleteQ(Q); /* 弹出一个入度为0的顶点 */
TopOrder[cnt++] = V; /* 将之存为结果序列的下一个元素 */
/* 对V的每个邻接点W->AdjV */
for ( W=Graph->G[V].FirstEdge; W; W=W->Next )
if ( --Indegree[W->AdjV] == ) {/* 若删除V使得W->AdjV入度为0 */
AddQ(Q, W->AdjV); /* 则该顶点入列 */
Earliest[W->AdjV] = Earliest[V] + W->Weight;
// if((Earliest[V]+W->Weight)>Earliest[W->AdjV] && Earliest[W->AdjV])
// Earliest[W->AdjV] = Earliest[V] + W->Weight;
}
} /* while结束*/ if ( cnt != Graph->Nv )
return false; /* 说明图中有回路, 返回不成功标志 */
else
return true;
} int main()
{
LGraph Graph;
WeightType Earliest[MaxVertexNum];
Vertex TopOrder[MaxVertexNum],V;
int ret; Graph = BuildGraph();
// PrintGraph(Graph);
ret = TopSort(Graph, TopOrder, Earliest);
if(ret == false) {
printf("Impossible");
} else if(ret == true) {
int max = Earliest[];
for(int i=;i<Graph->Nv;i++) {
// printf("%d: [%d]\n", i, Earliest[i]);
if(max < Earliest[i])
max = Earliest[i];
}
printf("%d", max);
}
// printf("TopOrder:");
// for(V=0;V<Graph->Nv;V++)
// printf("%d ", TopOrder[V]);
// printf("\n");
return ;
}

08-图8 How Long Does It Take(25 分)邻接表和队列的更多相关文章

  1. 图的bfs遍历模板(邻接矩阵存储和邻接表存储)

    bfs遍历图模板伪代码: bfs(u){ //遍历u所在的连通块 queue q; //将u入队 inq[u] = true; while (q非空){ //取出q的队首元素u进行访问 for (从u ...

  2. 图结构练习——判断给定图是否存在合法拓扑序列(dfs算法(第一个代码),邻接矩阵(前两个代码),邻接表(第三个代码))

    sdut 2140 图结构练习——判断给定图是否存在合法拓扑序列 Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述  给定一个有向图 ...

  3. 数据结构 《2》----基于邻接表表示的图的实现 DFS(递归和非递归), BFS

    图通常有两种表示方法: 邻接矩阵 和 邻接表 对于稀疏的图,邻接表表示能够极大地节省空间. 以下是图的数据结构的主要部分: struct Vertex{ ElementType element; // ...

  4. 数据结构学习笔记05图 (邻接矩阵 邻接表-->BFS DFS、最短路径)

    数据结构之图 图(Graph) 包含 一组顶点:通常用V (Vertex) 表示顶点集合 一组边:通常用E (Edge) 表示边的集合 边是顶点对:(v, w) ∈E ,其中v, w ∈ V 有向边& ...

  5. 图的邻接表存储表示(C)

    //---------图的邻接表存储表示------- #include<stdio.h> #include<stdlib.h> #define MAX_VERTEXT_NUM ...

  6. 数据结构(11) -- 邻接表存储图的DFS和BFS

    /////////////////////////////////////////////////////////////// //图的邻接表表示法以及DFS和BFS //////////////// ...

  7. 邻接表存储图,DFS遍历图的java代码实现

    import java.util.*; public class Main{ static int MAX_VERTEXNUM = 100; static int [] visited = new i ...

  8. Invitation Cards(邻接表+逆向建图+SPFA)

    Time Limit: 8000MS   Memory Limit: 262144K Total Submissions: 17538   Accepted: 5721 Description In ...

  9. 图的建立——邻接表表示(C语言+VC6.0平台)

    图是一种重要而且相对复杂的数据结构,在实际编程中非常有用.邻接表是图的主要表示形式之一,是一种链接表表示方法. #include<stdio.h> #include<stdlib.h ...

  10. 图的邻接表存储 c实现

    图的邻接表存储 c实现 (转载) 用到的数据结构是 一个是顶点表,包括顶点和指向下一个邻接点的指针 一个是边表, 数据结构跟顶点不同,存储的是顶点的序号,和指向下一个的指针 刚开始的时候把顶点表初始化 ...

随机推荐

  1. jenkins之启动与关闭

    jenkins可以通过内置的应用服务器或者借助其他应用服务器启动 目录 1.启动jenkins 2.关闭jenkins 3.重启jenkins 4.重新加载jenkins配置信息 1.启动jenkin ...

  2. java 虚方法。 后面new 那个类, 就调用哪个类的方法 ,而非定义类的方案。 关于父子 类的 呵呵

    java   虚方法.     后面new  那个类, 就调用哪个类的方法 ,而非定义类的方案.  关于父子 类的   呵呵 在多态的情况下,声明为父类类型的引用变量只能调用父类中的方法,但如果此变量 ...

  3. Centos7.2命令安装图形化界面

    版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/liang_operations/arti ...

  4. Vagrant 入门 - 项目设置

    原文地址 配置 Vagrant 项目的第一步是创建 Vagrantfile 文件.Vagrantfile 文件的目的有两个: 设置项目的根目录.Vagrant 中的许多配置选项是相对于这个根目录的. ...

  5. Cookie 记录最后访问时间

    package cn.gs.ly.servlet; import java.io.IOException; import java.io.PrintWriter; import java.util.D ...

  6. Aizu - ALDS1_4_C Dictionary

    Search III Your task is to write a program of a simple dictionary which implements the following ins ...

  7. jmeter对响应数据做断言

    单独校验某个接口中的某个字段时,断言就相当于检查点 添加http请求,输入路径url

  8. Django CORS跨域资源共享

    1,什么是CORS ​ 允许浏览器向跨源(协议 + 域名 + 端口)服务器发出XMLHttpRequest请求,从而克服了AJAX只能同源使用的限制 2,特点 ​ 1,浏览器自动完成(在请求头中加入特 ...

  9. Java相关面试题总结+答案(四)

    [反射] 57. 什么是反射? 反射是在运行状态中,对于任意一个类,都能够知道该类的所有属性和方法,对于任意一个对象,都能够获得该对象的任一属性和方法:这种动态获取信息以及动态调用对象的方法的功能称之 ...

  10. spring-第四篇之让bean获取所在的spring容器

    1.如上一篇文章所述,有时候bean想发布一些容器事件,就需要先获取spring容器,然后将Event交由spring容器将事件发布出去. 为了让bean获取它所在的spring容器,可以让该bean ...