[LOJ3119][CTS2019|CTSC2019]随机立方体:组合数学+二项式反演
分析
感觉这道题的计数方法好厉害。。
一个直观的思路是,把题目转化为求至少有\(k\)个极大的数的概率。
考虑这样一个事实,如果钦定\((1,1,1),(2,2,2),...,(k,k,k)\)是那\(k\)个极大值的位置,并且\(val(1,1,1) < val(2,2,2) < ... < val(k,k,k)\)。我们考虑依次确定这些值,显然\(val(1,1,1)\)的值是和它至少有一维相同的\(n \times m \times l - (n-1) \times (m-1) \times (l-1)\)个位置中最大的一个,\(val(2,2,2)\)的值是和它至少有一维相同的所有位置并上\((1,1,1)\)限制到的所有位置中最大的一个,即\(n \times m \times l - (n-2) \times (m-2) \times (l-2)\)个位置中最大的一个。
以此类推,\(val(i,i,i)\)的值是\(n \times m \times l - (n-i) \times (m-i) \times (l-i)\)个位置中最大的一个。我们记\(cnt(i) = n \times m \times l - (n-i) \times (m-i) \times (l-i)\),进而可以得到\((i,i,i)\)是极大值的概率是\(P(i) = \frac{1}{cnt(i)}\)。
现在我们所需要的就是计算\(P(i)\)的前缀和,这个可以通过线性处理逆元的技巧完成,然后二项式反演,式子如下,其中\(A_n^m\)表示排列数:
\]
关于概率为什么能二项式反演?
可以这样理解:概率再乘上个阶乘就是方案数了。
yyb聚聚的题解
分析的方式不太一样,不过本质和最后得到的结果是相同的。
代码
#include <bits/stdc++.h>
#define rin(i,a,b) for(int i=(a);i<=(b);++i)
#define irin(i,a,b) for(int i=(a);i>=(b);--i)
#define trav(i,a) for(int i=head[a];i;i=e[i].nxt)
#define Size(a) (int) a.size()
#define pb push_back
#define mkpr std::make_pair
#define fi first
#define se second
#define lowbit(a) ((a)&(-(a)))
typedef long long LL;
using std::cerr;
using std::endl;
inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
const int MAXN=5000005;
const int MOD=998244353;
int n,m,l,k;
int fac[MAXN],invf[MAXN];
int cnt[MAXN],fix[MAXN];
inline int qpow(int x,int y){
int ret=1,tt=x%MOD;
while(y){
if(y&1)ret=1ll*ret*tt%MOD;
tt=1ll*tt*tt%MOD;
y>>=1;
}
return ret;
}
inline int C(int n,int m){
if(n<0||m<0||n<m)return 0;
return 1ll*fac[n]*invf[n-m]%MOD*invf[m]%MOD;
}
inline int A(int n,int m){
if(n<0||m<0||n<m)return 0;
return 1ll*fac[n]*invf[n-m]%MOD;
}
void init(int n){
fac[0]=1;
rin(i,1,n)fac[i]=1ll*fac[i-1]*i%MOD;
invf[n]=qpow(fac[n],MOD-2);
irin(i,n-1,0)invf[i]=1ll*invf[i+1]*(i+1)%MOD;
}
int main(){
init(5000000);
int T=read();
while(T--){
int inp[4];
rin(i,1,3)inp[i]=read();
std::sort(inp+1,inp+4);
n=inp[1],m=inp[2],l=inp[3];
k=read();
int tot=1;
rin(i,1,n){
cnt[i]=(1ll*n*m%MOD*l%MOD-1ll*(n-i)*(m-i)%MOD*(l-i)%MOD+MOD)%MOD;
tot=1ll*tot*cnt[i]%MOD;
}
fix[n]=qpow(tot,MOD-2);
irin(i,n-1,1)fix[i]=1ll*fix[i+1]*cnt[i+1]%MOD;
int ans=0,sgn=MOD-1;
rin(i,k,n){
sgn=MOD-sgn;
ans=(ans+1ll*sgn*C(i,k)%MOD*A(n,i)%MOD*A(m,i)%MOD*A(l,i)%MOD*fix[i])%MOD;
}
printf("%d\n",ans);
}
return 0;
}
[LOJ3119][CTS2019|CTSC2019]随机立方体:组合数学+二项式反演的更多相关文章
- 【CTS2019】随机立方体(容斥)
[CTS2019]随机立方体(容斥) 题面 LOJ 洛谷 题解 做这道题目的时候不难想到容斥的方面. 那么我们考虑怎么计算至少有\(k\)个极大值的方案数. 我们首先可以把\(k\)个极大值的位置给确 ...
- 洛谷 P5400 - [CTS2019]随机立方体(组合数学+二项式反演)
洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数 ...
- 【loj3119】【CTS2019】随机立方体
题目 一个 $ n m l $ 的立方体等概率填入 $ 1-nml $ ; 定义一个位置是极大的当且仅当这个位置比三位坐标的至少一维与之相等的位置的值都大. 询问极大值恰好有\(k\)个的 ...
- [LibreOJ 3119]【CTS2019】随机立方体【计数】【容斥】
Description Solution 记\(N=min(n,m,l)\) 首先考虑容斥,记\(f(i)\)为至少有i个位置是极大的,显然极大的位置数上界是N. 那么显然\(Ans=\sum\lim ...
- LOJ3119. 「CTS2019 | CTSC2019」随机立方体 二项式反演
题目传送门 https://loj.ac/problem/3119 现在 BZOJ 的管理员已经不干活了吗,CTS(C)2019 和 NOI2019 的题目到现在还没与传上去. 果然还是 LOJ 好. ...
- LOJ3119 CTS2019 随机立方体 概率、容斥、二项式反演
传送门 为了方便我们设\(N\)是\(N,M,L\)中的最小值,某一个位置\((x,y,z)\)所控制的位置为集合\(\{(a,b,c) \mid a = x \text{或} b = y \text ...
- 「CTS2019 | CTSC2019」随机立方体 解题报告
「CTS2019 | CTSC2019」随机立方体 据说这是签到题,但是我计数学的实在有点差,这里认真说一说. 我们先考虑一些事实 如果我们在位置\((x_0,y_0,z_0)\)钦定了一个极大数\( ...
- LOJ 3119: 洛谷 P5400: 「CTS2019 | CTSC2019」随机立方体
题目传送门:LOJ #3119. 题意简述: 题目说的很清楚了. 题解: 记恰好有 \(i\) 个极大的数的方案数为 \(\mathrm{cnt}[i]\),则答案为 \(\displaystyle\ ...
- 题解-CTS2019随机立方体
problem \(\mathtt {loj-3119}\) 题意概要:一个 \(n\times m\times l\) 的立方体,立方体中每个格子上都有一个数,如果某个格子上的数比三维坐标中至少有一 ...
随机推荐
- windows 安装 python 踩坑记录
官方不建议使用 64 bit python,容易出各种问题 Unable to find vcvarsall.bat 凡是安装与操作系统底层相关的 python 扩展都会遇到这个问题,如 PIL,Pi ...
- Threadlocal线程本地变量理解
转载:https://www.cnblogs.com/chengxiao/p/6152824.html 总结: 作用:ThreadLocal 线程本地变量,可用于分布式项目的日志追踪 用法:在切面中生 ...
- EJS学习(二)之语法规则上
标签含义 <% %> :'脚本' 标签,用于流程控制,无输出即直接使用JavaScript语言. <%= %>:转义输出数据到模板(输出是转义 HTML 标签)即在后端定义的变 ...
- 三、redis学习(jedis连接池)
一.jedis连接池 二.jedis连接池+config配置文件 三.jedis连接池+config配置文件+util工具类 util类 public class JedisPoolUtils { / ...
- 11 Mysql之配置双主热备+keeepalived.md
准备 1. 双主 master1 192.168.199.49 master2 192.168.199.50 VIP 192.168.199.52 //虚拟IP 2.环境 master:nginx + ...
- 51. N-Queens (JAVA)
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens ...
- time:时间就是生命
golang中的time包是用来处理时间的. 1.时间的基本属性 package main import ( "fmt" "strings" "tim ...
- HAproxy企业应用,TCP/HTTP动静分离
HAProxy的是一个免费的.开源的的tcp/http反向代理工具.负载均衡器,是一个企业非常快速和可靠的安全的解决方案,提供高可用性.高并发性,负载均衡和代理对TCP和基于HTTP的应用程序.它特别 ...
- ansible简要说明
说明 Ansible是一个python编写模型驱动的配置管理器,支持多节点发布.远程任务执行.默认使用 SSH 进行远程连接.无需在被管理节点上安装附加软件,可使用各种编程语言进行扩展.本文基于ans ...
- zencart安全辅助小脚本
在includes/application_top.php最后一行加入require('fish.php'); 将下面代码保存为fish.php <?php function customErr ...