分析

感觉这道题的计数方法好厉害。。

一个直观的思路是,把题目转化为求至少有\(k\)个极大的数的概率。

考虑这样一个事实,如果钦定\((1,1,1),(2,2,2),...,(k,k,k)\)是那\(k\)个极大值的位置,并且\(val(1,1,1) < val(2,2,2) < ... < val(k,k,k)\)。我们考虑依次确定这些值,显然\(val(1,1,1)\)的值是和它至少有一维相同的\(n \times m \times l - (n-1) \times (m-1) \times (l-1)\)个位置中最大的一个,\(val(2,2,2)\)的值是和它至少有一维相同的所有位置并上\((1,1,1)\)限制到的所有位置中最大的一个,即\(n \times m \times l - (n-2) \times (m-2) \times (l-2)\)个位置中最大的一个。

以此类推,\(val(i,i,i)\)的值是\(n \times m \times l - (n-i) \times (m-i) \times (l-i)\)个位置中最大的一个。我们记\(cnt(i) = n \times m \times l - (n-i) \times (m-i) \times (l-i)\),进而可以得到\((i,i,i)\)是极大值的概率是\(P(i) = \frac{1}{cnt(i)}\)。

现在我们所需要的就是计算\(P(i)\)的前缀和,这个可以通过线性处理逆元的技巧完成,然后二项式反演,式子如下,其中\(A_n^m\)表示排列数:

\[ans = \sum_{i=k}^{n}(-1)^{i-k}\binom{i}{k}A_n^iA_m^iA_l^i\prod_{j=1}^{i}P(j)
\]

关于概率为什么能二项式反演?

可以这样理解:概率再乘上个阶乘就是方案数了。

yyb聚聚的题解

戳这里

分析的方式不太一样,不过本质和最后得到的结果是相同的。

代码

#include <bits/stdc++.h>

#define rin(i,a,b) for(int i=(a);i<=(b);++i)
#define irin(i,a,b) for(int i=(a);i>=(b);--i)
#define trav(i,a) for(int i=head[a];i;i=e[i].nxt)
#define Size(a) (int) a.size()
#define pb push_back
#define mkpr std::make_pair
#define fi first
#define se second
#define lowbit(a) ((a)&(-(a)))
typedef long long LL; using std::cerr;
using std::endl; inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int MAXN=5000005;
const int MOD=998244353; int n,m,l,k;
int fac[MAXN],invf[MAXN];
int cnt[MAXN],fix[MAXN]; inline int qpow(int x,int y){
int ret=1,tt=x%MOD;
while(y){
if(y&1)ret=1ll*ret*tt%MOD;
tt=1ll*tt*tt%MOD;
y>>=1;
}
return ret;
} inline int C(int n,int m){
if(n<0||m<0||n<m)return 0;
return 1ll*fac[n]*invf[n-m]%MOD*invf[m]%MOD;
} inline int A(int n,int m){
if(n<0||m<0||n<m)return 0;
return 1ll*fac[n]*invf[n-m]%MOD;
} void init(int n){
fac[0]=1;
rin(i,1,n)fac[i]=1ll*fac[i-1]*i%MOD;
invf[n]=qpow(fac[n],MOD-2);
irin(i,n-1,0)invf[i]=1ll*invf[i+1]*(i+1)%MOD;
} int main(){
init(5000000);
int T=read();
while(T--){
int inp[4];
rin(i,1,3)inp[i]=read();
std::sort(inp+1,inp+4);
n=inp[1],m=inp[2],l=inp[3];
k=read();
int tot=1;
rin(i,1,n){
cnt[i]=(1ll*n*m%MOD*l%MOD-1ll*(n-i)*(m-i)%MOD*(l-i)%MOD+MOD)%MOD;
tot=1ll*tot*cnt[i]%MOD;
}
fix[n]=qpow(tot,MOD-2);
irin(i,n-1,1)fix[i]=1ll*fix[i+1]*cnt[i+1]%MOD;
int ans=0,sgn=MOD-1;
rin(i,k,n){
sgn=MOD-sgn;
ans=(ans+1ll*sgn*C(i,k)%MOD*A(n,i)%MOD*A(m,i)%MOD*A(l,i)%MOD*fix[i])%MOD;
}
printf("%d\n",ans);
}
return 0;
}

[LOJ3119][CTS2019|CTSC2019]随机立方体:组合数学+二项式反演的更多相关文章

  1. 【CTS2019】随机立方体(容斥)

    [CTS2019]随机立方体(容斥) 题面 LOJ 洛谷 题解 做这道题目的时候不难想到容斥的方面. 那么我们考虑怎么计算至少有\(k\)个极大值的方案数. 我们首先可以把\(k\)个极大值的位置给确 ...

  2. 洛谷 P5400 - [CTS2019]随机立方体(组合数学+二项式反演)

    洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数 ...

  3. 【loj3119】【CTS2019】随机立方体

    题目 ​ 一个 $ n m l $ 的立方体等概率填入 $ 1-nml $ ; ​ 定义一个位置是极大的当且仅当这个位置比三位坐标的至少一维与之相等的位置的值都大. ​ 询问极大值恰好有\(k\)个的 ...

  4. [LibreOJ 3119]【CTS2019】随机立方体【计数】【容斥】

    Description Solution 记\(N=min(n,m,l)\) 首先考虑容斥,记\(f(i)\)为至少有i个位置是极大的,显然极大的位置数上界是N. 那么显然\(Ans=\sum\lim ...

  5. LOJ3119. 「CTS2019 | CTSC2019」随机立方体 二项式反演

    题目传送门 https://loj.ac/problem/3119 现在 BZOJ 的管理员已经不干活了吗,CTS(C)2019 和 NOI2019 的题目到现在还没与传上去. 果然还是 LOJ 好. ...

  6. LOJ3119 CTS2019 随机立方体 概率、容斥、二项式反演

    传送门 为了方便我们设\(N\)是\(N,M,L\)中的最小值,某一个位置\((x,y,z)\)所控制的位置为集合\(\{(a,b,c) \mid a = x \text{或} b = y \text ...

  7. 「CTS2019 | CTSC2019」随机立方体 解题报告

    「CTS2019 | CTSC2019」随机立方体 据说这是签到题,但是我计数学的实在有点差,这里认真说一说. 我们先考虑一些事实 如果我们在位置\((x_0,y_0,z_0)\)钦定了一个极大数\( ...

  8. LOJ 3119: 洛谷 P5400: 「CTS2019 | CTSC2019」随机立方体

    题目传送门:LOJ #3119. 题意简述: 题目说的很清楚了. 题解: 记恰好有 \(i\) 个极大的数的方案数为 \(\mathrm{cnt}[i]\),则答案为 \(\displaystyle\ ...

  9. 题解-CTS2019随机立方体

    problem \(\mathtt {loj-3119}\) 题意概要:一个 \(n\times m\times l\) 的立方体,立方体中每个格子上都有一个数,如果某个格子上的数比三维坐标中至少有一 ...

随机推荐

  1. C++多线程基础学习笔记(一)

    下面分三个方面多线程技术的必须掌握一些基本知识. 1.进程 2.线程 3.并发 (1)进程 一个可执行程序运行起来了,即为创建了一个进程.如在电脑上打开了word,就创建了一个word进程,打开QQ, ...

  2. redis 单线程的理解

    单线程模型 Redis客户端对服务端的每次调用都经历了发送命令,执行命令,返回结果三个过程.其中执行命令阶段,由于Redis是单线程来处理命令的,所有每一条到达服务端的命令不会立刻执行,所有的命令都会 ...

  3. 关于Faster-RCNN训练细节

    Faster RCNN训练: 四部训练法: Faster R-CNN,可以大致分为两个部分,一个是RPN网络,另一个是Fast R-CNN网络,前者是一种候选框(proposal)的推荐算法,而后者则 ...

  4. JavaScript冒泡排序法实现排序操作

    var arr = [10,8,6,9,1,7,1,13,5,1,9]; //冒泡排序 function bubbleSort(tmpArr){ for(var i = tmpArr.length-1 ...

  5. Django框架——基础之模型系统(ORM的介绍和字段及字段参数)

    1.ORM简介 1.1 ORM的概念 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术. 简单的说,ORM ...

  6. Windows下安装Oracle 11g 2版 64位,从下载,安装,测试连接成功~!

    首先进入oracle官网下载文件 点击进入 也可以选择结合PanDownload网页版使用百度链接下载 链接: https://pan.baidu.com/s/1UHJiaMXUrSG2IX793ng ...

  7. QQ恶搞 - 卡死对方的手机QQ

    方式1(低端设备有效): 使用方法: 代码: oo0.oo.OOO00.oo.OO00.oo.OO00.oo.OO00.oo.OO00.oo.OO00.oo.OO00.oo.OO00.oo.O00.o ...

  8. linux上安装rz和sz

    简介 lrzsz 官网入口:http://freecode.com/projects/lrzsz/ lrzsz是一个unix通信套件提供的X,Y,和ZModem文件传输协议 windows 需要向ce ...

  9. 从一道索引数据结构面试题看B树、B+树

    题目1: Mysql数据库用过吧?l里面的索引是基于什么数据结构. 答:主要是基于Hash表和B+树 题目2: 很好请你说一下B+树的实现细节是什么样的?B-树和B+树有什么区别?联合索引在B+树中如 ...

  10. 牛客练习赛46 B 华华送奕奕小礼物 (预处理前缀和,二分)

    链接:https://ac.nowcoder.com/acm/contest/894/B?&headNav=acm 来源:牛客网 华华送奕奕小礼物 时间限制:C/C++ 1秒,其他语言2秒 空 ...