特征点检测算法——FAST角点
上面的算法如SIFT、SURF提取到的特征也是非常优秀(有较强的不变性),但是时间消耗依然很大,而在一个系统中,特征提取仅仅是一部分,还要进行诸如配准、提纯、融合等后续算法。这使得实时性不好,降系了统性能。
Edward Rosten和Tom Drummond两位大神经过研究,于2006年在《Machine learning for high-speed corner detection》中提出了一种FAST特征点,并在2010年稍作修改后发表了《Features From Accelerated Segment Test》,简称FAST。注意:FAST只是一种特征点检测算法,并不涉及特征点的特征描述。
FAST详解
FAST角点特征定义:若某像素与其周围邻域内足够多的像素点相差较大,则该像素可能是角点。
步骤

1、上图所示,一个以像素p为中心,半径为3的圆上,有16个像素点(p1、p2、...、p16)。
2、设定阈值t,如果这周围的16个像素中有连续的n个像素的像素值都小于 Ip−t或者有连续的n个像素都大于Ip+t, 那么这个点就被判断为角点。 opencv中默认采用Fast-9-16(还包括Fast-5-8,Fast-7-12).即在周围取16个像素点,若超过连续9个点与中心点差值大于阈值即成为候选角点。
4、很可能大部分检测出来的点彼此之间相邻,我们要去除一部分这样的点。为了解决这一问题,我们采用了非极大值抑制的算法,对图像进行非极大值抑制,对一个角点P建立一个3*3(或5*5,7*7)的窗口,如果该窗口内出现了另一个角点Q,则比较P与Q的大小,如果P大,则将Q点删除,如果P小,则将P点删除。
得分计算公式如下(公式中用V表示得分,t表示阈值):

opencv中角点强度计算方法不采用上面的公式所描述,而是采用最小的差值作为其角点强度值。例如若采用Fast-9-16,计算连续的9个位置与中心位置的差值的绝对值,取最小的一个差值作为其强度值。
FAST 算法特点
1、在速度上要比其他算法速度快很多
2、受图像噪声以及设定的阈值影响很大
3、FAST不产生多尺度特征而且FAST特征点没有方向信息,这样就会失去旋转不变性。
特征点检测算法——FAST角点的更多相关文章
- OPENCV图像特征点检测与FAST检测算法
前面描述角点检测的时候说到,角点其实也是一种图像特征点,对于一张图像来说,特征点分为三种形式包括边缘,焦点和斑点,在OPENCV中,加上角点检测,总共提供了以下的图像特征点检测方法 FAST SURF ...
- FAST特征点检测算法
一 原始方法 简介 在局部特征点检测快速发展的时候,人们对于特征的认识也越来越深入,近几年来许多学者提出了许许多多的特征检测算法及其改进算法,在众多的特征提取算法中,不乏涌现出佼佼者. 从最早期的Mo ...
- OpenCV计算机视觉学习(13)——图像特征点检测(Harris角点检测,sift算法)
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 前言 ...
- OpenCV特征点检测算法对比
识别算法概述: SIFT/SURF基于灰度图, 一.首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点, ...
- FAST特征点检测&&KeyPoint类
FAST特征点检测算法由E.Rosten和T.Drummond在2006年在其论文"Machine Learning for High-speed Corner Detection" ...
- [转]ORB特征提取-----FAST角点检测
转载地址:https://blog.csdn.net/maweifei/article/details/62887831 (一)ORB特征点提取算法的简介 Oriented FAST and Rota ...
- 【OpenCV文档】用于角点检测的Fast算法
原文地址:http://docs.opencv.org/trunk/doc/py_tutorials/py_feature2d/py_fast/py_fast.html#fast-algorithm- ...
- FAST特征点检测
Features From Accelerated Segment Test 1. FAST算法原理 博客中已经介绍了很多图像特征检测算子,我们可以用LoG或者DoG检测图像中的Blobs(斑点检测) ...
- 第十四节、FAST角点检测(附源码)
在前面我们已经陆续介绍了许多特征检测算子,我们可以根据图像局部的自相关函数求得Harris角点,后面又提到了两种十分优秀的特征点以及他们的描述方法SIFT特征和SURF特征.SURF特征是为了提高运算 ...
随机推荐
- django学习——通过HttpResponseRedirect 和 reverse实现重定向(转载)
人分类: django 用django开发web应用, 经常会遇到从一个旧的url转向一个新的url,也就是重定向. HttpResponseRedirect:构造函数的第一个参数是必要的 — 用 ...
- eclipse 或 STS 卸载SVN 插件
help菜单 ==> about eclipse ==>install details按钮 ==> installed software选项卡 选中下面的这几项,点击 uni ...
- MySQL-快速入门(13)MySQL日志
1.MySQL的日志.主要分为4类. 1>二进制日志:记录所有更改数据的语句,可以用于数据复制. 2>错误日志:记录MySQL服务的启动.运行.停止MySQL服务时出现的问题. 3> ...
- spring - 第N篇 一些笔记
1.properties文件的引入 <bean id="propertyConfigurer" class="org.springframework.beans.f ...
- Python 矩阵(线性代数)
Python 矩阵(线性代数) 这里有一份新手友好的线性代数笔记,是和深度学习花书配套,还被Ian Goodfellow老师翻了牌. 笔记来自巴黎高等师范学院的博士生Hadrien Jean,是针对& ...
- 思维体操: HDU1022Train Problem I
Train Problem I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- 深入了解RabbitMQ工作原理及简单使用
深入了解RabbitMQ工作原理及简单使用 RabbitMQ系列文章 RabbitMQ在Ubuntu上的环境搭建 深入了解RabbitMQ工作原理及简单使用 RabbitMQ交换器Exchange介绍 ...
- mysql中的substring()截取字符函数
substring(参数1,参数2,参数3),其中三个参数分别表示:参数1表示需要截取的字符串,参数2表示从字符串的那个位置开始截取(字符串下标从1开始),参数3表示要截取多少位,如果不写,表示截取从 ...
- gp指标信息
RSI: 相对强弱指数,RSI的原理简单来说是以数字计算的方法求出买卖双方的力量对比 强弱指标理论认为,任何市价的大涨或大跌,均在0-100之间变动,根据常态分配 认为RSI值多在30-70之间变动, ...
- There are multiple modules with names that only differ in casing. This can lead to unexpected behavior when compiling on a filesystem with other case-semantic.
There are multiple modules with names that only differ in casing.This can lead to unexpected behavio ...