剑指offer--day03
1.1题目:斐波那契数列:大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0)。n<=39
1.2解题思路:斐波那契数列公式为:

这道题递归很好写,但是存在很严重的效率问题。我们以求解f(10)为例类分析递归的求解过程。想求f(10),需要先求得f(9)和f(8)。同样,想求得f(9),需要先求的f(8)和f(7)....我们可以用树形结构来表示这种依赖关系,如下图所示:

我们不难发现在这棵树中有很多结点是重复的,而且重复的结点数会随着n的增加而急剧增加,这意味计算量会随着n的增加而急剧增大。事实上,递归方法计算的时间复杂度是以n的指数的方式递增的。
所以,使用简单的循环方法来实现。
1.3代码:
# -*- coding:utf-8 -*-
class Solution:
def Fibonacci(self, n):
# write code here
if n <= 1:
return n
first = 0
second = 1
f = 0
for i in range(2, n+1):
f = first + second
first = second
second = f
return f
2.1题目:跳台阶:一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
2.2解题思路:
首先我们考虑最简单的情况。如果只有1级台阶,那么显然只一种跳法。如果有2级台阶,那就有两种跳法:一种是分两次跳,每次跳1级;另一种是一次跳2级。
接着,我们来讨论一般情况。我们把n级台阶时的跳法看成是n的函数,记为f(n)。当n>2时,第一次跳的时候就有两种不同的选择:一是第一次只跳1级,此时跳法数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1);另外一种选择是跳一次跳2级,此时跳法数目等于后面剩下的n-2级台阶的跳法数目,即为f(n-2)。因此n级台阶的不同跳法的总数f(n)=f(n-1)+f(n-2)。分析到这里,我们不难看出这实际上就是斐波那契数列了。
2.3代码:
class Solution:
def jumpFloor(self, number):
# write code here
if number <= 2:
return number
first = 1
second = 2
f = 0
for i in range(3, number+1):
f = first + second
first = second
second = f
return f
刷题平台:牛客网:https://www.nowcoder.com/ta/coding-interviews
剑指offer--day03的更多相关文章
- 剑指Offer面试题:1.实现Singleton模式
说来惭愧,自己在毕业之前就该好好看看<剑指Offer>这本书的,但是各种原因就是没看,也因此错过了很多机会,后悔莫及.但是后悔是没用的,现在趁还有余力,把这本书好好看一遍,并通过C#通通实 ...
- 剑指Offer面试题:14.链表的倒数第k个节点
PS:这是一道出境率极高的题目,记得去年参加校园招聘时我看到了3次,但是每次写的都不完善. 一.题目:链表的倒数第k个节点 题目:输入一个链表,输出该链表中倒数第k个结点.为了符合大多数人的习惯,本题 ...
- 《剑指offer》面试题12:打印1到最大的n位数
面试题12:打印1到最大的n位数 剑指offer题目12,题目如下 输入数字n,按顺序打印出1到最大的n位十进制数,比如输入3,则打印出1,2,3一直到最大的三位数999 方法一 和面试题11< ...
- 《剑指offer》面试题11: 数值的整数次方
面试题11: 数值的整数次方 剑指offer面试题11,题目如下 实现函数double power(double base,int exponent),求base的exponent次方, 不得使用库 ...
- 剑指 Offer 题目汇总索引
剑指 Offer 总目录:(共50道大题) 1. 赋值运算符函数(或应说复制拷贝函数问题) 2. 实现 Singleton 模式 (C#) 3.二维数组中的查找 4.替换空格 ...
- 面试题目——《剑指Offer》
1.把一个字符串转换成整数——<剑指Offer>P29 2.求链表中的倒数第k个结点——<剑指Offer>P30 3.实现Singleton模式——<剑指Offer> ...
- 剑指offer习题集2
1.把数组排成最小的数 class Solution { public: static bool compare(const string& s1, const string& s2) ...
- 剑指offer习题集1
1.打印二叉树 程序很简单,但是其中犯了一个小错误,死活找不到,写代码要注意啊 这里左右子树,要注意是node->left,结果写成root->left vector<int> ...
- 剑指Offer:面试题20——顺时针打印矩阵(java实现)
题目描述: 输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数 字,例如,如果输入如下矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则依次打印出数字1, ...
- 牛客网上的剑指offer题目
题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数. 题目:请实现一个函数,将一 ...
随机推荐
- socket参数的详解
socket参数的详解 socket.socket(family=AF_INET,type=SOCK_STREAM,proto=0,fileno=None) 创建socket对象的参数说明: fami ...
- SQL SERVER BCP导入导出
bcp是SQL Server中负责导入导出数据的一个命令行工具,它是基于DB-Library的,并且能以并行的方式高效地导入导出大批量的数据.bcp可以将数据库的表或视图直接导出,也能通过SELECT ...
- Codeforces Round #569 (Div. 2) 题解A - Alex and a Rhombus+B - Nick and Array+C - Valeriy and Dequ+D - Tolik and His Uncle
A. Alex and a Rhombus time limit per test1 second memory limit per test256 megabytes inputstandard i ...
- 强化学习(Reinfment Learning) 简介
本文内容来自以下两个链接: https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/ https: ...
- [易学易懂系列|golang语言|零基础|快速入门|(三)]
接下来,我们主要讲讲package. 先列举下go的package的一些核心特性: 1.go的package不局限于一个文件,组成一个package的多个文件,编译后实际上和一个文件类似,组成包的不同 ...
- GUI学习之二十五——QFontDialog学习总结
今天学习字体对话框——QFontDialog()控件. QFontDialog()是继承自QDialog()的一个子类,用来选择给定的字体(包括字体.字号.样式等) 一.构造函数 QFontDialo ...
- 2.k8s资源清单
一.常见资源对象 常见的资源对象:(包括但不仅限于) l Workload: Pod,ReplicaSet,Deployment,StatefulSet,DaemonSet,Job,Cronjob ...
- 激活函数:Sigmod&tanh&Softplus&Relu详解
什么是激活函数? 激活函数(Activation functions)对于人工神经网络模型去学习.理解非常复杂和非线性的函数来说具有十分重要的作用. 它们将非线性特性引入到我们的网络中.其主要目的是将 ...
- 3D世界变换
一直弄不清3D场景中scaleOrientation的作用,还有scale.orientation(roation).translation的顺序问题,以往都是试图查一下,关于前者网上几乎找不到什么清 ...
- 安装VS2017
www.visualstudio.com/zh-hans/downloads/ https://visualstudio.microsoft.com/zh-hans/thank-you-downloa ...