洛谷 P3182 [HAOI2016]放棋子(高精度,错排问题)
传送门
解题思路
不会错排问题的请移步——错排问题 && 洛谷 P1595 信封问题
这一道题其实就是求对于每一行的每一个棋子都放在没有障碍的地方的方案数。
因为障碍是每行、每列只有一个,所以答案不受障碍的影响。
这里障碍就等于是信封,棋子就等于是信,也是求所有的信都放错信封的方案数。
显然是错排问题。
公式:d(i)=(i-1)*(d(i-1)+d(i-2))。看一看数据范围,没有取余,所以需要用高精度。
注意
- 公式中是(i-1)而不是(n-1)——整整一个小时
- 高精度加法乘法混合运算中,这里是先乘后加。——整整半个小时
- c++函数中数组的引用可以用*数组名或者(&数组名)[数组大小]两种方法——十分钟
所以这样一道垃圾的题用了我接近两个小时。。。
AC代码
#include<iostream>
using namespace std;
const int maxn=;
int a[][maxn];
int n;
void add(int k){
for(int i=;i<=;i++){
int x=a[k][i];
a[k][i]=a[k-][i]+a[k-][i];
a[k][i]*=k-;
a[k][i]+=x;
a[k][i+]+=a[k][i]/;
a[k][i]%=;
}
}
int main()
{
cin>>n;
a[][]=;
for(int i=;i<=n;i++){
add(i);
}
int i=maxn;
while(--i&&a[n][i]==&&i>);
for(;i>;i--) cout<<a[n][i];
return ;
}
洛谷 P3182 [HAOI2016]放棋子(高精度,错排问题)的更多相关文章
- 洛谷 P3182 [HAOI2016]放棋子(错排问题)
题面 luogu 题解 裸的错排问题 错排问题 百度百科:\(n\)个有序的元素应有\(n!\)个不同的排列,如若一个排列使得所有的元素不在原来的位置上,则称这个排列为错排:有的叫重排.如,1 2的错 ...
- 洛谷P3182 [HAOI2016]放棋子
P3182 [HAOI2016]放棋子 题目描述 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要 ...
- [HAOI2016] 放棋子及错排问题
题目 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足 ...
- [洛谷P3158] [CQOI2011]放棋子
洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...
- 洛谷P3158 [CQOI2011]放棋子 组合数学+DP
题意:在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同颜色的棋子不能在同一行或者同一列.有多少祌方法? 解法:这道题不会做,太菜了qwq.题解是看洛谷大佬的. 设C是组合数, ...
- 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)
P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...
- 【BZOJ4563】[Haoi2016]放棋子 错排+高精度
[BZOJ4563][Haoi2016]放棋子 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍 ...
- bzoj4563: [Haoi2016]放棋子(错排+高精)
4563: [Haoi2016]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 387 Solved: 247[Submit][Status] ...
- [Haoi2016]放棋子 题解
4563: [Haoi2016]放棋子 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 440 Solved: 285[Submit][Status] ...
随机推荐
- layui token 过期 重新登陆
这个方法你要全局设置 //jquery全局配置 $.ajaxSetup({ cache: false, crossDomain: true, headers :{' ...
- nginx图片过滤处理模块http_image_filter_module
nginx图片过滤处理模块http_image_filter_module安装配置笔记 http_image_filter_module是nginx提供的集成图片处理模块,支持nginx-0.7.54 ...
- 模拟输入(ADC-A0)
ESP8266具有内置的10位ADC,只有一个ADC通道(A0引脚),即只有一个ADC输入引脚可读取来自外部器件的模拟电压 ESP8266上的ADC通道和芯片供电电压复用,也就是说我们可以将其设置为测 ...
- Vue刷新token,判断token是否过期
1.判断token是否过期,前端请求后,后台会返回一个状态给你.根据状态判断是否过期,刷新token 2.是否每次请求后端都会返回新的token给你.或者后端给你定义了一个刷新token的方法,那此时 ...
- 粘性固定 position:sticky
在研究rem布局时,无意中看到网易新闻移动端首页的导航栏用上了一个CSS 3的属性粘性定位position:sticky,它是相对定位(position:relative)和固定定位(position ...
- 【NOIP2015模拟11.3】备用钥匙
题目 你知道Just Odd Inventions社吗?这个公司的业务是"只不过是奇妙的发明(Just Odd Inventions)".这里简称为JOI社. JOI社有N名员工, ...
- js中的 与和或 , && ,||
|| 1.只要"||"前面为false,不管"||"后面是true还是false,都返回"||"后面的值. 2.只要"||&quo ...
- STM32内部硬核的认识
STM32内部含有硬核,对于一些协议(例如:UART,SPI,IIC,CRC等)我们只要调用硬核就可以了,同时我们也可以自己写通信协议. 这些硬核最终肯定是要有引脚输出的,这就是为什么STM32的引脚 ...
- sass、less中的scoped属性
1.scoped 的实现原理 Vue中的Less 中的 scoped 属性的效果主要是通过 PostCss 实现的.代码示例: //编译前 <template> <div class ...
- ipcloud上传裁切图片,保存为base64再压缩传给后台
<!doctype html> <html> <head> <meta charset="utf-8"> <meta name ...