传送门


解题思路

不会错排问题的请移步——错排问题 && 洛谷 P1595 信封问题

这一道题其实就是求对于每一行的每一个棋子都放在没有障碍的地方的方案数。

因为障碍是每行、每列只有一个,所以答案不受障碍的影响。

这里障碍就等于是信封,棋子就等于是信,也是求所有的信都放错信封的方案数。

显然是错排问题。

公式:d(i)=(i-1)*(d(i-1)+d(i-2))。看一看数据范围,没有取余,所以需要用高精度。

注意

  • 公式中是(i-1)而不是(n-1)——整整一个小时
  • 高精度加法乘法混合运算中,这里是先乘后加。——整整半个小时
  • c++函数中数组的引用可以用*数组名或者(&数组名)[数组大小]两种方法——十分钟

所以这样一道垃圾的题用了我接近两个小时。。。

AC代码

 #include<iostream>
using namespace std;
const int maxn=;
int a[][maxn];
int n;
void add(int k){
for(int i=;i<=;i++){
int x=a[k][i];
a[k][i]=a[k-][i]+a[k-][i];
a[k][i]*=k-;
a[k][i]+=x;
a[k][i+]+=a[k][i]/;
a[k][i]%=;
}
}
int main()
{
cin>>n;
a[][]=;
for(int i=;i<=n;i++){
add(i);
}
int i=maxn;
while(--i&&a[n][i]==&&i>);
for(;i>;i--) cout<<a[n][i];
return ;
}

洛谷 P3182 [HAOI2016]放棋子(高精度,错排问题)的更多相关文章

  1. 洛谷 P3182 [HAOI2016]放棋子(错排问题)

    题面 luogu 题解 裸的错排问题 错排问题 百度百科:\(n\)个有序的元素应有\(n!\)个不同的排列,如若一个排列使得所有的元素不在原来的位置上,则称这个排列为错排:有的叫重排.如,1 2的错 ...

  2. 洛谷P3182 [HAOI2016]放棋子

    P3182 [HAOI2016]放棋子 题目描述 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要 ...

  3. [HAOI2016] 放棋子及错排问题

    题目 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍的位置不能放棋子),要求你放N个棋子也满足 ...

  4. [洛谷P3158] [CQOI2011]放棋子

    洛谷题目链接:[CQOI2011]放棋子 题目描述 在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同 颜色的棋子不能在同一行或者同一列.有多少祌方法?例如,n=m=3,有两个 ...

  5. 洛谷P3158 [CQOI2011]放棋子 组合数学+DP

    题意:在一个m行n列的棋盘里放一些彩色的棋子,使得每个格子最多放一个棋子,且不同颜色的棋子不能在同一行或者同一列.有多少祌方法? 解法:这道题不会做,太菜了qwq.题解是看洛谷大佬的. 设C是组合数, ...

  6. 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  7. 【BZOJ4563】[Haoi2016]放棋子 错排+高精度

    [BZOJ4563][Haoi2016]放棋子 Description 给你一个N*N的矩阵,每行有一个障碍,数据保证任意两个障碍不在同一行,任意两个障碍不在同一列,要求你在这个矩阵上放N枚棋子(障碍 ...

  8. bzoj4563: [Haoi2016]放棋子(错排+高精)

    4563: [Haoi2016]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 387  Solved: 247[Submit][Status] ...

  9. [Haoi2016]放棋子 题解

    4563: [Haoi2016]放棋子 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 440  Solved: 285[Submit][Status] ...

随机推荐

  1. PHP使用HighChart生成股票K线图详解

    本人qq群也有许多的技术文档,希望可以为你提供一些帮助(非技术的勿加). QQ群:   281442983 (点击链接加入群:http://jq.qq.com/?_wv=1027&k=29Lo ...

  2. 真正解决iframe高度自适应问题

    1.前言 解决iframe高度自适应问题有两种方法1.pym2.手动设置iframe的高度 本文主要是总结第二种实现方式,因为第一种pym.js插件我没用懂 如果使用iframe时,遇到以下的需求: ...

  3. apache-2.4.x 编译安装方法

    apache-2.4.x 编译安装方法 作者:朱 茂海 /分类:Apache 字号:L M S apache-.2与新出的apache-.4安装不同的地方在于,.4版的已经不自带apr库,所以在安装a ...

  4. SQL把a表字段数据存到b表字段 update,,insert

    update SYS_Navigation set SYS_Navigation.PARENT_XH = SYS_Power_menu.parent_id,SYS_Navigation.web_tit ...

  5. BZOJ 3357: [Usaco2004]等差数列 动态规划

    Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) # ...

  6. POJ 3764 The xor-longest Path ( 字典树求异或最值 && 异或自反性质 && 好题好思想)

    题意 : 给出一颗无向边构成的树,每一条边都有一个边权,叫你选出一条路,使得此路所有的边的异或值最大. 分析 : 暴力是不可能暴力的,这辈子不可能暴力,那么来冷静分析一下如何去做.假设现在答案的异或值 ...

  7. 所有input输入完成后,改变按钮颜色

    $(function(){ $('input').on('input propertychange',function(){ if(($.trim($('.add1').val())!==" ...

  8. Redis分布式锁服务

    阅读目录: 概述 分布式锁 多实例分布式锁 总结 概述 在多线程环境下,通常会使用锁来保证有且只有一个线程来操作共享资源.比如: object obj = new object(); lock (ob ...

  9. iOS9 3DTouch 之 Home Screen Quick Actions

    最后更新:2016-12-18 测试环境: Xcode8.1 一.前言 iOS9 已经过去一年了,3D Touch也在项目中实战过,但一直没有总结一下,现在新的项目也用到了3D Touch, 网上找了 ...

  10. 三十四、python中shutil模块的介绍

    '''A.shutil:高级的文件 文件夹 压缩包 处理模块''' import shutil '''1.copyfileobj(a1,a2,lenth):将文件内容拷贝到另一个文件中''' shut ...