【模板】【数论】二次剩余Cipolla算法,离散对数BSGS 算法
Cipolla
LL ksm(LL k,LL n)
{
LL s=1;
for(;n;n>>=1,k=k*k%mo) if(n&1) s=s*k%mo;
return s;
}
namespace number
{
LL D;
struct Z
{
LL x,y;
Z(LL _x=0,LL _y=0){x=_x,y=_y;}
};
Z operator +(const Z &x,const Z &y) {return Z((x.x+y.x)%mo,(x.y+y.y)%mo);}
Z operator -(const Z &x,const Z &y) {return Z((x.x-y.x+mo)%mo,(x.y-y.y+mo)%mo);}
Z operator *(const Z &x,const Z &y) {return Z((x.x*y.x%mo+D*x.y%mo*y.y%mo+mo)%mo,(x.y*y.x%mo+x.x*y.y%mo)%mo);}
Z opt(const Z &x) {return Z(mo-x.x,mo-x.y);}
Z pwr(Z k,LL n)
{
Z s=Z(1,0);
for(;n;n>>=1,k=k*k) if(n&1) s=s*k;
return s;
}
}
using namespace number;//其实这部分像减法,相反数什么的都没什么用...
pair<LL,LL> cipolla(LL k)
{
k%=mo;
if(ksm(k,(mo-1)/2)==mo-1) return make_pair(-1,-1);
if(k==0) return make_pair(0,0);
LL a=rand()%mo;
while(ksm((a*a%mo-k+mo)%mo,(mo-1)/2)<=1) a=rand()%mo;
D=(a*a%mo-k+mo)%mo;
LL v=(pwr(Z(a,1),(mo+1)/2)).x;
return make_pair(v,mo-v);
}
BSGS
LL ds[N];
int ud[N];
#define mo1 10000007
vector<LL> h[mo1];
LL hp[mo1];
int hs(LL v)
{
int k=v%mo1;
while(hp[k]!=-1&&hp[k]!=v) k=(k==mo1-1)?k:k+1;
return k;
}
void BSGS(LL x,LL a)
{
static LL ds2[N];
ds2[0]=ds[0]=0;
LL q=sqrt(mo);
ud[0]=0;
LL v=a;
fo(i,0,q-1)
{
int w=hs(v);
if(hp[w]==-1) ud[++ud[0]]=w,hp[w]=v;
h[w].push_back(i);
v=v*x%mo;
}
LL v2=1,vq=ksm(x,q);
for(int i=0;i-q<=mo;i+=q)
{
int w=hs(v2);
if(hp[w]!=-1)
{
int r=h[w].size();
fo(j,0,r-1) ds2[++ds2[0]]=(i-h[w][j]+mo-1)%(mo-1);
}
v2=v2*vq%mo;
}
sort(ds2+1,ds2+ds2[0]+1);
fo(i,1,ds2[0]) if(i==1||ds2[i]!=ds2[i-1]) ds[++ds[0]]=ds2[i];
fo(i,1,ud[0]) h[ud[i]].clear(),hp[ud[i]]=-1;
}
【模板】【数论】二次剩余Cipolla算法,离散对数BSGS 算法的更多相关文章
- 【算法】BSGS算法
BSGS算法 BSGS算法用于求解关于x的模方程\(A^x\equiv B\mod P\)(P为质数),相当于求模意义下的对数. 思想: 由费马小定理,\(A^{p-1}\equiv 1\mod P\ ...
- BSGS算法学习笔记
从这里开始 离散对数和BSGS算法 扩展BSGS算法 离散对数和BSGS算法 设$x$是最小的非负整数使得$a^{x}\equiv b\ \ \ \pmod{m}$,则$x$是$b$以$a$为底的离散 ...
- BSGS算法总结
BSGS算法总结 \(BSGS\)算法(Baby Step Giant Step),即大步小步算法,用于解决这样一个问题: 求\(y^x\equiv z\ (mod\ p)\)的最小正整数解. 前提条 ...
- 二次剩余Cipolla算法学习笔记
对于同余式 \[x^2 \equiv n \pmod p\] 若对于给定的\(n, P\),存在\(x\)满足上面的式子,则乘\(n\)在模\(p\)意义下是二次剩余,否则为非二次剩余 我们需要计算的 ...
- uva11916 bsgs算法逆元模板,求逆元,组合计数
其实思维难度不是很大,但是各种处理很麻烦,公式推导到最后就是一个bsgs算法解方程 /* 要给M行N列的网格染色,其中有B个不用染色,其他每个格子涂一种颜色,同一列上下两个格子不能染相同的颜色 涂色方 ...
- 【codevs 1565】【SDOI 2011】计算器 快速幂+拓展欧几里得+BSGS算法
BSGS算法是meet in the middle思想的一种应用,参考Yveh的博客我学会了BSGS的模版和hash表模板,,, 现在才会hash是不是太弱了,,, #include<cmath ...
- BSGS算法
BSGS算法 我是看着\(ppl\)的博客学的,您可以先访问\(ppl\)的博客 Part1 BSGS算法 求解关于\(x\)的方程 \[y^x=z(mod\ p)\] 其中\((y,p)=1\) 做 ...
- BSGS算法及其扩展
bsgs算法: 我们在逆元里曾经讲到过如何用殴几里得求一个同余方程的整数解.而\(bsgs\)就是用来求一个指数同余方程的最小整数解的:也就是对于\(a^x\equiv b \mod p\) 我们可以 ...
- POJ2417 Discrete Logging | A,C互质的bsgs算法
题目: 给出A,B,C 求最小的x使得Ax=B (mod C) 题解: bsgs算法的模板题 bsgs 全称:Baby-step giant-step 把这种问题的规模降低到了sqrt(n)级别 首 ...
随机推荐
- Linux文件目录的权限
权限对文件的重要性:(主要是针对文件的内容而言,与文件名没有关系) r: 可读取此文件的实际内容. w: 可以编辑.新增或者修改该文件的内容(但不能删除该文件) x: 该文件具有可以被系统执行的权限. ...
- [JS] 点击按钮触发后台事件前,弹出确认框
只需要在button中设置onclick属性触发事件即可 下面以ASP.NET代码为例, ASP.NET中按钮客户端触发js代码的属性是OnClientClick <asp:Button ID= ...
- Kettle的Kitchen和Span
Kitchen——工作(job)执行器 (命令行方式) -rep : Repository name 任务包所在存储名 -user : Repository username 执行人 ...
- REST风格,@PathVariable注解
REST(Representational State Transfer,表述性状态转移)是一种软件风格.所谓的REST风格可以简单理解为:使用url表示资源时,每个资源都用一个独一无二的url来表示 ...
- next_permutation() 全排列函数
next_permutation() 全排列函数 这个函数是STL自带的,用来求出该数组的下一个排列组合 相当之好用,懒人专用 适用于不想自己用dfs写全排列的同学(结尾附上dfs代码) 洛谷oj可去 ...
- 第一次参赛经历:ecfinal总结
刚接到要去参加ec的消息时,还是非常激动的,毕竟第一次参赛就参加如此高水平的编程竞赛(更高水平的比赛就是wf). 教练临时组队,把三个从没在一起打过比赛的三个人组成一队,当时有点担心默契和配合上的问题 ...
- xml文件简单读取,循环遍历
xml文件的简单读取出来生成dom4j.Document对象树,循环遍历获取节点 例子: import java.util.Iterator; import org.dom4j.Document; i ...
- Android API文档
官方API文档: Android官网: https://developer.android.google.cn/index.html (不需要梯子) Android官网: https://develo ...
- PythonWeb框架Django搭建过程
首先下载PyCharm专业版 破解地址:https://www.52pojie.cn/thread-997094-1-1.html 之后创建python虚拟环境(创建虚拟环境在上一篇博客) 激活虚拟环 ...
- [WPF]BringIntoView
1.在scrollview 中的frameworkelement可以使用 FE.BringIntoView(); 滚动到此控件. 2.该 方法能一个重载 Bottom.BringIntoView(ne ...