2019 Multi-University Training Contest 3 T6 - Fansblog
Fansblog
Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 374 Accepted Submission(s): 107
Problem Description
Farmer John keeps a website called ‘FansBlog’ .Everyday , there are many people visited this blog.One day, he find the visits has reached P , which is a prime number.He thinks it is a interesting fact.And he remembers that the visits had reached another prime number.He try to find out the largest prime number Q ( Q < P ) ,and get the answer of Q! Module P.But he is too busy to find out the answer. So he ask you for help. ( Q! is the product of all positive integers less than or equal to n: n! = n * (n-1) * (n-2) * (n-3) *… * 3 * 2 * 1 . For example, 4! = 4 * 3 * 2 * 1 = 24 )
Input
First line contains an number T(1<=T<=10) indicating the number of testcases.
Then T line follows, each contains a positive prime number P (1e9≤p≤1e14)
Output
For each testcase, output an integer representing the factorial of Q modulo P.
Sample Input
1
1000000007
Sample Output
328400734
题意
给出一个质数p,每一次询问\(s!\%p,(s\text{为小于p的最大质数})\)。
题解
定理:\((p-1)!\equiv p-1 \space(\mod p)\),p 为质数。
并且,质数以ln分配。
所以,$ans \sum_{i=s+1}^{p-1}i\equiv p-1(\mod p) $
所以,$ ans\equiv p-1\sum_{i=s+1}{p-1}i{-1}(\mod p) $
代码
#include<bits/stdc++.h>
#define int long long
using namespace std;
int prime[10]={2,3,5,7,11,13,19,61,2333,24251};
long long M;
int Quick_Multiply(int a,int b,int c)
{
long long ans=0,res=a;
while(b)
{
if(b&1)
ans=(ans+res)%c;
res=(res+res)%c;
b>>=1;
}
return (int)ans;
}
int Quick_Power(int a,int b,int c)
{
int ans=1,res=a;
while(b)
{
if(b&1)
ans=Quick_Multiply(ans,res,c);
res=Quick_Multiply(res,res,c);
b>>=1;
}
return ans;
}
bool Miller_Rabin(int x)
{
int i,j,k;
int s=0,t=x-1;
if(x==2) return true;
if(x<2||!(x&1)) return false;
while(!(t&1))
{
s++;
t>>=1;
}
for(i=0;i<10&&prime[i]<x;++i)
{
int a=prime[i];
int b=Quick_Power(a,t,x);
for(j=1;j<=s;++j)
{
k=Quick_Multiply(b,b,x);
if(k==1&&b!=1&&b!=x-1)
return false;
b=k;
}
if(b!=1) return false;
}
return true;
}
signed main()
{
int T;
cin >> T;
while (T--){
int x;
int ans;
scanf("%lld",&x);
ans = x - 1;
int M = x;
while (Miller_Rabin(x-1) == 0) x--, ans = Quick_Multiply(ans, Quick_Power(x,M-2,M),M);
cout << ans << endl;
}
return 0;
}
2019 Multi-University Training Contest 3 T6 - Fansblog的更多相关文章
- 2019 Multi-University Training Contest 3 - 1006 - Fansblog - 打表 - 暴力
http://acm.hdu.edu.cn/showproblem.php?pid=6608 题意:给一个比较大的质数P(1e14以内),求比它小的最大的质数Q(貌似保证存在的样子,反正我没判不存在) ...
- 2019 Nowcoder Multi-University Training Contest 4 E Explorer
线段树分治. 把size看成时间,相当于时间 $l$ 加入这条边,时间 $r+1$ 删除这条边. 注意把左右端点的关系. #include <bits/stdc++.h> ; int X[ ...
- 2019 Nowcoder Multi-University Training Contest 1 H-XOR
由于每个元素贡献是线性的,那么等价于求每个元素出现在多少个异或和为$0$的子集内.因为是任意元素可以去异或,那么自然想到线性基.先对整个集合A求一遍线性基,设为$R$,假设$R$中元素个数为$r$,那 ...
- HDU校赛 | 2019 Multi-University Training Contest 3
2019 Multi-University Training Contest 3 http://acm.hdu.edu.cn/contests/contest_show.php?cid=850 100 ...
- 2019 Multi-University Training Contest 8
2019 Multi-University Training Contest 8 C. Acesrc and Good Numbers 题意 \(f(d,n)\) 表示 1 到 n 中,d 出现的次数 ...
- 2019 Multi-University Training Contest 7
2019 Multi-University Training Contest 7 A. A + B = C 题意 给出 \(a,b,c\) 解方程 \(a10^x+b10^y=c10^z\). tri ...
- 2019 Multi-University Training Contest 1
2019 Multi-University Training Contest 1 A. Blank upsolved by F0_0H 题意 给序列染色,使得 \([l_i,r_i]\) 区间内恰出现 ...
- 2019 Multi-University Training Contest 2
2019 Multi-University Training Contest 2 A. Another Chess Problem B. Beauty Of Unimodal Sequence 题意 ...
- 2019 Multi-University Training Contest 5
2019 Multi-University Training Contest 5 A. fraction upsolved 题意 输入 \(x,p\),输出最小的 \(b\) 使得 \(bx\%p&l ...
随机推荐
- Axios 的基本使用
Axios 是一个基于 promise 的HTTP 库, 可以用在浏览器和 node.js 中. 1. 从浏览器创建 XMLHttpRequests 2. 从node.js 创建 http 请求 3. ...
- REST风格,@PathVariable注解
REST(Representational State Transfer,表述性状态转移)是一种软件风格.所谓的REST风格可以简单理解为:使用url表示资源时,每个资源都用一个独一无二的url来表示 ...
- 滑雪(dp或记忆化搜索)
题意:给你一个二维数组,求最长的递减路线的长度,只能向四个方向延伸. 解法1.dp[i][j]以i.j结尾的最长路线长度.边界:每个数初值为1, 转移:从四周向i.j转移,if(a[i][j]> ...
- 2017 ACM-ICPC 亚洲区(乌鲁木齐赛区)网络赛 F. Islands
On the mysterious continent of Tamriel, there is a great empire founded by human. To develope the tr ...
- 【二】Django 视图和url配置
在新建的Django项目下,新建一个views的python文件,编辑如下代码 from django.http import HttpResponse def hello(request): ret ...
- 和IE6-IE8说拜拜 一段IE兼容HTML代码 针对IE版本写css
通过这段html可以让你对特定的ie版本添加内容,只在特定版本ie展现,可以是javascript.css.html. <!--[if IE]> 这样使用IE浏览器(全部版本)的人都看得到 ...
- Redis【4】Java Jedis 操作 Redis~
package redis.redis; import redis.clients.jedis.Jedis; import redis.clients.jedis.JedisPool; /** * 描 ...
- Linux RAID磁盘阵列
RAID磁盘阵列 什么是RAID RAID是磁盘阵列的英文缩写,多块磁盘组成了一个组合,一起完成存储任务,就是磁盘阵列. RAID几种常用的类别(组合) RAID0:条带卷:最低磁盘个数2+,空间利用 ...
- java面试(反射)05
1.什么是反射 JAVA反射机制是在运行状态中,对于任意一个类,都能够获取这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意一个方法和属性:这种动态获取类信息以及动态调用对象内容就称为jav ...
- Linux安装redis,启动配置不生效(指定启动加载配置文件)
一.今天有个同学问我,为什么明明安装了redis,修改了配置,启动的时候,配置还是不生效.如下图是安装后的redis文件图. 二.想加载上图中的redis.conf,进入到src中寻找到启动文件red ...