This time, you are supposed to find A+B where A and B are two polynomials.

Input Specification:

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial:

K N​1​​ a​N​1​​​​ N​2​​ a​N​2​​​​ ... N​K​​ a​N​K​​​​

where K is the number of nonzero terms in the polynomial, N​i​​ and a​N​i​​​​ (,) are the exponents and coefficients, respectively. It is given that 1,0.

Output Specification:

For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.

Sample Input:

2 1 2.4 0 3.2
2 2 1.5 1 0.5

Sample Output:

3 2 1.5 1 2.9 0 3.2
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
struct poly{
int expo;
double coef;
};
bool cmp(poly po1,poly po2){
if(po1.expo>po2.expo) return true;
return false;
}
int main(){
/**
注意点:
1.先指数,后系数
2.题意没有注明是否是递降的多项式,所以当做递降的来试试
**/
/**输入数据*/
int T;poly temp;
vector<poly> vec1;
vector<poly> vec2;
vector<poly> res;
cin>>T;
while(T--){
cin>>temp.expo;
cin>>temp.coef;
vec1.push_back(temp);
}
cin>>T;
while(T--){
cin>>temp.expo;
cin>>temp.coef;
vec2.push_back(temp);
}
/**排序,题意没说是有序的*/
sort(vec1.begin(),vec1.end(),cmp);
sort(vec2.begin(),vec2.end(),cmp);
/**计算*/
int i=,j=;
while(true){
if(vec1[i].expo==vec2[j].expo){
poly temp;
temp.expo=vec1[i].expo;
temp.coef=vec1[i].coef+vec2[j].coef;
if(temp.coef!=) res.push_back(temp);
/**coef不为0时相加!!!!!*/
i++;j++;
}else if(vec1[i].expo>vec2[j].expo){
res.push_back(vec1[i]);
i++;
}else{
res.push_back(vec2[j]);
j++;
}
if(i==(vec1.size())){
while(j!=(vec2.size())){
res.push_back(vec2[j]);
j++;
}
break;
}
if(j==(vec2.size())){
while(i!=(vec1.size())){
res.push_back(vec1[i]);
i++;
}
break;
}
if(i==(vec1.size())&&j==(vec2.size())){
break;
}
}
cout<<res.size();
for(int i=;i<res.size();i++){
printf(" %d %.1f",res[i].expo,res[i].coef);
/**注意浮点数应该是一位小数!!!!!*/
}
system("pause");
return ;
}

逻辑正确,出现了大量错误:

1.系数不为0相加未考虑

2.浮点数为一位小数未考虑

考试时应该注意

PAT Advanced 1002 A+B for Polynomials (25 分)(隐藏条件,多项式的系数不能为0)的更多相关文章

  1. PAT (Advanced Level) Practice 1002 A+B for Polynomials (25 分) 凌宸1642

    PAT (Advanced Level) Practice 1002 A+B for Polynomials (25 分) 凌宸1642 题目描述: This time, you are suppos ...

  2. 【PAT】1002. A+B for Polynomials (25)

    1002. A+B for Polynomials (25) This time, you are supposed to find A+B where A and B are two polynom ...

  3. PAT甲级 1002 A+B for Polynomials (25)(25 分)

    1002 A+B for Polynomials (25)(25 分) This time, you are supposed to find A+B where A and B are two po ...

  4. PAT 甲级1002 A+B for Polynomials (25)

    1002. A+B for Polynomials (25) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue T ...

  5. PAT 1002 A+B for Polynomials (25分)

    题目 This time, you are supposed to find A+B where A and B are two polynomials. Input Specification: E ...

  6. PAT (Advanced Level) 1009. Product of Polynomials (25)

    简单模拟. #include<iostream> #include<cstring> #include<cmath> #include<algorithm&g ...

  7. 【PAT甲级】1002 A+B for Polynomials (25 分)

    题意:给出两个多项式,计算两个多项式的和,并以指数从大到小输出多项式的指数个数,指数和系数. AAAAAccepted code: #include<bits/stdc++.h> usin ...

  8. 1002 A+B for Polynomials (25分)

    This time, you are supposed to find A+B where A and B are two polynomials. Input Specification: Each ...

  9. PAT (Advanced Level) Practice 1028 List Sorting (25 分) (自定义排序)

    Excel can sort records according to any column. Now you are supposed to imitate this function. Input ...

随机推荐

  1. 使用Vue前端框架实现知乎日报app

    这是:主页代码 <template> <view class="content"> <view class="uni-list"& ...

  2. 2018-2019-2 网络对抗技术 20165220 Exp 9 Web安全基础

    2018-2019-2 网络对抗技术 20165220 Exp 9 Web安全基础 实验任务 本实践的目标理解常用网络攻击技术的基本原理,做不少于7个题目,共3.5分.包括(SQL,XSS,CSRF) ...

  3. Mac ssh key生成

    转载https://blog.csdn.net/wangjunling888/article/details/51115659 1. 查看秘钥是否存在 打开终端查看是否已经存在SSH密钥:cd ~/. ...

  4. IoC有什么好处

    IoC(Inversion of Control):控制反转. DI(Dependency Injection):依赖注入. 控制反转是目的,依赖注入是实现控制反转的手段. 控制反转是一种面向对象的思 ...

  5. vs2019安装

    1.下载vs_enterprise.exe(建议下载到无中文无空格目录) ,这个很小,官网下载企业版即可 2.在当前目录cmd命令执行: vs_enterprise.exe --layout offl ...

  6. python - 标准库:traceback模块

    traceback 模块: 允许你在程序里打印异常的跟踪返回 (Traceback)信息, 类似未捕获异常时解释器所做的. import traceback try: raise SyntaxErro ...

  7. Flink容错机制

    Flink的Fault Tolerance,是在在Chandy Lamport Algorithm的基础上扩展实现了一套分布式Checkpointing机制,这个机制在论文"Lightwei ...

  8. 打印GC日志

    所需参数如下: -XX:+PrintGCTimeStamps -XX:+PrintGCDetails -verbose:gc -Xloggc:gc.log 会在根目录生成 gc.log 文件,里面记录 ...

  9. 每次进步一点点——linux expect 使用

    1. 介绍 expect是建立在tcl(参见:Tcl/Tk快速入门 )基础上的一个工具,它可以让一些需要交互的任务自动化地完成.相当于模拟了用户和命令行的交互操作. 一个具体的场景:远程登陆服务器,并 ...

  10. python基础--函数1

    # 一,为什么使用函数 # 1,可以使代码的组织结构清晰,可读性好 # 2,遇到重复的问题可以直接调用函数 # 3,功能扩展时,可直接修改,而无需每处都进行修改. # 二,函数为何物 # 函数对程序员 ...