BZOJ 2286: [Sdoi2011]消耗战 虚树
Description
Input
第一行一个整数n,代表岛屿数量。
接下来n-1行,每行三个整数u,v,w,代表u号岛屿和v号岛屿由一条代价为c的桥梁直接相连,保证1<=u,v<=n且1<=c<=100000。
第n+1行,一个整数m,代表敌方机器能使用的次数。
接下来m行,每行一个整数ki,代表第i次后,有ki个岛屿资源丰富,接下来k个整数h1,h2,…hk,表示资源丰富岛屿的编号。
Output
输出有m行,分别代表每次任务的最小代价。
题解:
朴素做法是 $O(mn)$ 的树形DP,效率太低
虽然询问次数非常多,然而 $\sum k$ 却只有 $5\times 10^5$
我们引入虚树
虚树就是每次只保留有用的节点,即关键节点与它们之间的 $LCA$
先对所有关键点按照在原树中 $dfs$ 序前后排一下序
开一个栈 $S$ 来存储一条深度依次递增的链(注意,$S$ 存的是链)
考虑每次新扩展一个关键节点 $x$
(1) 栈中元素小于等于 $1$ 个,直接加入即可
(2) 令 $lca$ 表示 $LCA(S_{top},x)$
若 $lca=S_{top}$, 那么 $x$ 与 $S_{top}$ 以及栈中的链还是会构成一条链,没有分叉,直接将 $x$ 加入栈中即可
若 $lca\neq S_{top}$ ,那么说明 $S_{top}$ 及其子树已全部扩展完毕,我们需要一步一步退栈
while(top > 1 && dep[S[top - 1]] >= dep[lca]) add_edge(S[top - 1], S[top]), --top;
if(S[top] != lca) add_edge(lca, S[top]), S[top] = lca;
S[++top] = x;
条件是 $S_{top-1}$ 的深度要大于等于 $lca$ 的深度
由于是大于等于,所以如果 $lca$ 在栈中的话最后 $S_{top}$ 一定会等于 $lca$,那么就无需加入 $lca$
如果 $lca$ 不等于 $S_{top}$ 的话,那么一定是 $S_{top}$ 与 $S_{top-1}$ 之间夹着 $lca$ ,直接由 $lca$ 向 $S_{top}$ 连一条边,并将栈顶改为 $lca$ 即可
#include <bits/stdc++.h>
#define setIO(s) freopen(s".in", "r", stdin)
#define maxn 500004
#define LOG 23
#define inf 100000000000
#define ll long long
using namespace std;
vector <int> G[maxn];
int edges, tim, n, top;
int hd[maxn], to[maxn << 1], nex[maxn << 1], val[maxn << 1];
int dfn[maxn], f[LOG][maxn], arr[maxn], S[maxn], mk[maxn], dep[maxn];
ll mn[maxn];
inline void addedge(int u, int v, int c)
{
nex[++edges] = hd[u], hd[u] = edges, to[edges] = v, val[edges] = c;
}
void dfs1(int u, int ff)
{
f[0][u] = ff;
for(int i = 1; i < 22; ++i) f[i][u] = f[i - 1][f[i - 1][u]];
dep[u] = dep[ff] + 1, dfn[u] = ++tim;
for(int i = hd[u]; i ; i = nex[i])
{
int v = to[i];
if(v == ff) continue;
mn[v] = min(mn[u], 1ll*val[i]);
dfs1(v, u);
}
}
inline int LCA(int a, int b)
{
if(dep[a] > dep[b]) swap(a, b);
if(dep[a] != dep[b])
{
for(int i = 21; i >= 0; --i) if(dep[f[i][b]] >= dep[a]) b = f[i][b];
}
if(a == b) return a;
for(int i = 21; i >= 0; --i) if(f[i][a] != f[i][b]) a = f[i][a], b = f[i][b];
return f[0][a];
}
bool cmp(int a, int b)
{
return dfn[a] < dfn[b];
}
inline void add_edge(int u, int v)
{
G[u].push_back(v);
}
inline void insert(int x)
{
if(top <= 1)
{
S[++top] = x;
return;
}
int lca = LCA(x, S[top]);
if(lca == S[top]) return;
while(top > 1 && dep[S[top - 1]] >= dep[lca]) add_edge(S[top - 1], S[top]), --top;
if(S[top] != lca) add_edge(lca, S[top]), S[top] = lca;
S[++top] = x;
}
ll DP(int x)
{
ll sum = 0, re;
for(int i = 0; i < G[x].size(); ++i) sum += DP(G[x][i]);
if(mk[x]) re = mn[x];
else re = min(mn[x], sum);
mk[x] = 0;
G[x].clear();
return re;
}
int main()
{
// setIO("input");
scanf("%d",&n);
for(int i = 1; i < n ; ++i)
{
int a, b, c;
scanf("%d%d%d",&a,&b,&c), addedge(a, b, c), addedge(b, a, c);
}
dep[1] = 1, mn[1] = inf, dfs1(1, 0);
int Q;
scanf("%d",&Q);
while(Q--)
{
int k;
scanf("%d",&k);
for(int i = 1; i <= k ; ++i) scanf("%d",&arr[i]);
sort(arr + 1, arr + 1 + k, cmp);
S[++top] = 1;
for(int i = 1; i <= k ; ++i) insert(arr[i]), mk[arr[i]] = 1;
while(top > 0) add_edge(S[top - 1], S[top]) , --top;
printf("%lld\n",DP(1));
for(int i = 1; i <= k ; ++i) mk[arr[i]] = 0;
}
return 0;
}
BZOJ 2286: [Sdoi2011]消耗战 虚树的更多相关文章
- bzoj 2286: [Sdoi2011]消耗战 虚树+树dp
2286: [Sdoi2011]消耗战 Time Limit: 20 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 在一 ...
- BZOJ 2286: [Sdoi2011]消耗战 虚树 树形dp 动态规划 dfs序
https://www.lydsy.com/JudgeOnline/problem.php?id=2286 wa了两次因为lca犯了zz错误 这道题如果不多次询问的话就是裸dp. 一棵树上多次询问,且 ...
- BZOJ.2286.[SDOI2011]消耗战(虚树 树形DP)
题目链接 BZOJ 洛谷P2495 树形DP,对于每棵子树要么逐个删除其中要删除的边,要么直接断连向父节点的边. 如果当前点需要删除,那么直接断不需要再管子树. 复杂度O(m*n). 对于两个要删除的 ...
- bzoj 2286 [Sdoi2011]消耗战 虚树+dp
题目大意:多次给出关键点,求切断边使所有关键点与1断开的最小费用 分析:每次造出虚树,dp[i]表示将i和i子树与父亲断开费用 对于父亲x,儿子y ①y为关键点:\(dp[x]\)+=\(dismn( ...
- BZOJ 2286 [Sdoi2011]消耗战 ——虚树
虚树第一题. 大概就是建一颗只与询问有关的更小的新树,然后在虚树上DP #include <map> #include <ctime> #include <cmath&g ...
- 【BZOJ】2286: [Sdoi2011]消耗战 虚树+DP
[题意]给定n个点的带边权树,每次询问给定ki个特殊点,求隔离点1和特殊点的最小代价.n<=250000,Σki<=500000. [算法]虚树+DP [题解]考虑普通树上的dp,设f[x ...
- BZOJ 2286: [Sdoi2011]消耗战
2286: [Sdoi2011消耗战 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2082 Solved: 736[Submit][Status] ...
- [BZOJ2286][SDOI2011]消耗战(虚树DP)
2286: [Sdoi2011]消耗战 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 4998 Solved: 1867[Submit][Statu ...
- bzoj 2286 [Sdoi2011]消耗战(虚树+树上DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2286 [题意] 给定一棵树,切断一条树边代价为ci,有m个询问,每次问使得1号点与查询 ...
随机推荐
- C#—Nhibernate使用教程
本篇文章,让我们一起来探索Nhibernate.首先我们去搜索Nhibernate下载地址,如下链接所示.该版本可能是最新版,我下载的4.0.4.GA.其中GA意思我没搞清楚.不过应该不重要.http ...
- php-fpm启动不起来,php-fpm无法启动的一种情况
今天碰了一个很奇怪的问题,平时好好的php-fpm修改了一个参数后,突然启动不起来了,试着把参数还原.甚至用备份的配置文件还原都没办法启动php,而且不给任务启动错误的提示,纳闷!!!后来上网找了个资 ...
- MySQL使用Navicat远程连接时报错1251
1.报错信息 client does not support authentication protocol requested by server:consider upgrading MySQL ...
- python实现建立udp通信
实现代码如下: #udp协议通信import socket,timeclass UdpConnect: def get_udp(self,ip,port,message): #建立udp连接 myso ...
- Java课堂笔记(二):面向对象
几乎每一本介绍Java语言的书中都会提到“面向对象”的这个概念,然而博主初学Java时看到这方面的内容一般都是草草地看一看,甚至是直接略过.原因很简单:考试基本不考,而且初学阶段写代码也很少用上.但事 ...
- Mac--PHP已经开启gd扩展验证码不显示
错误显示:Call to undefined function imagettftext() 原因: mac系统中自带的php的gd库中,缺少对freetype的支持,导致图片无法显示. 解决: 1 ...
- docker搭建一个渗透测试环境 bwapp为例
bwapp是一个渗透测试靶场,他其中中含有100多个Web漏洞 基本涵盖了所有主要的已知Web漏洞,包括OWASP Top 10的各种 首先要去搜索一下 看一下有哪些镜像可以下载 docke ...
- Node.js实战13:fs模块奥义!开发一个数据库。
本文,将使用fs开发一种简单的文件型数据库. 数据库中,记录将采用JSON模式,内容型如: {"key":"a","value":" ...
- Spring Boot & ES 实战,值得参考!
作者:废物大师兄 cnblogs.com/cjsblog/p/9756978.html 1. 前言 1.1. 集成方式 Spring Boot中集成Elasticsearch有4种方式: REST C ...
- webpack基本介绍及使用
1.什么是webpack webpack是一个前端资源加载/打包工具.它根据模块的依赖关系进行静态分析,然后将这些模块按照指定的规则生成对应的静态资源. 官网地址:https://www.webpac ...