[CSP-S模拟测试]:F(DP+线段树)
题目传送门(内部题49)
输入格式
第一行四个整数$n,q,a,b$。
接下来$n$行每行一个整数$p_i$。
输出格式
一行一个整数表示答案。
样例
样例输入:
10 3 3 7
样例输出:
数据范围与提示
对于$30\%$的数据:$n,q\leqslant 2,000$
对于所有数据:
$1\leqslant n,q\leqslant {10}^5$
$1\leqslant p_i\leqslant n$
题解
首先,我们考虑$30\%$的算法怎么办?
考虑$DP$,定义$dp[i][j]$表示到了第$i$步,一个指针在$p_i$,另一个指针在$j$的最短步数。
那么我们可以里出状态转移方程:
$\alpha.dp[i][j]=dp[i-1][j]+|p_i-p_{i-1}|$(上一次和这一次移动的是一个指针)
$\beta.dp[i][p_{i-1}]=dp[i-1][j]+|p_i-j|$(上一次和这一次移动的不是一个指针)
那么我们接着考虑如何优化。
发现转移$\alpha$其实就是将整个区间都加了$|p_i-p_{i-1}|$,而转移$\beta$我们可以维护$dp[i][j]+j$和$dp[i][j]-j$的最小值即可。
所以考虑线段树优化,即可得到满分。
时间复杂度:$\Theta(n\log n)$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
#define L(x) x<<1
#define R(x) x<<1|1
using namespace std;
int n,q,a,b;
int p[100001];
long long tr[4][400001];
void pushup(int x)
{
tr[0][x]=min(tr[0][L(x)],tr[0][R(x)]);
tr[1][x]=min(tr[1][L(x)],tr[1][R(x)]);
tr[2][x]=min(tr[2][L(x)],tr[2][R(x)]);
}
void pushdown(int x)
{
if(!tr[3][x])return;
tr[0][L(x)]+=tr[3][x];
tr[0][R(x)]+=tr[3][x];
tr[1][L(x)]+=tr[3][x];
tr[1][R(x)]+=tr[3][x];
tr[2][L(x)]+=tr[3][x];
tr[2][R(x)]+=tr[3][x];
tr[3][L(x)]+=tr[3][x];
tr[3][R(x)]+=tr[3][x];
tr[3][x]=0;
}
void build(int x,int l,int r)
{
if(l==r)
{
if(l==b)
{
tr[0][x]=0;
tr[1][x]=l;
tr[2][x]=-l;
}
return;
}
int mid=(l+r)>>1;
build(L(x),l,mid);
build(R(x),mid+1,r);
pushup(x);
}
void change(int x,int l,int r,int w,long long k)
{
if(l==r)
{
tr[0][x]=min(tr[0][x],k);
tr[1][x]=tr[0][x]+l;
tr[2][x]=tr[0][x]-l;
return;
}
int mid=(l+r)>>1;
pushdown(x);
if(w<=mid)change(L(x),l,mid,w,k);
else change(R(x),mid+1,r,w,k);
pushup(x);
}
long long ask1(int x,int l,int r,int L,int R)
{
if(R<l||r<L)return 200209230020020923;
if(L<=l&&r<=R)return tr[2][x];
int mid=(l+r)>>1;
pushdown(x);
return min(ask1(L(x),l,mid,L,R),ask1(R(x),mid+1,r,L,R));
}
long long ask2(int x,int l,int r,int L,int R)
{
if(R<l||r<L)return 200209230020020923;
if(L<=l&&r<=R)return tr[1][x];
int mid=(l+r)>>1;
pushdown(x);
return min(ask2(L(x),l,mid,L,R),ask2(R(x),mid+1,r,L,R));
}
int main()
{
scanf("%d%d%d%d",&n,&q,&a,&b);
memset(tr[0],0x3f,sizeof(tr[0]));
memset(tr[1],0x3f,sizeof(tr[1]));
memset(tr[2],0x3f,sizeof(tr[2]));
build(1,1,n);
for(int i=1;i<=q;i++)
{
scanf("%d",&b);
tr[0][0]=min(ask1(1,1,n,1,b)+b,ask2(1,1,n,b,n)-b);
tr[0][1]+=abs(a-b);
tr[1][1]+=abs(a-b);
tr[2][1]+=abs(a-b);
tr[3][1]+=abs(a-b);
change(1,1,n,a,tr[0][0]);
a=b;
}
cout<<tr[0][1]<<endl;
return 0;
}
rp++
[CSP-S模拟测试]:F(DP+线段树)的更多相关文章
- [CSP-S模拟测试]:bird(线段树优化DP)
题目传送门(内部题89) 输入格式 第一行两个数$n$和$k$,分别表示小鸟的只数和$R$装弹时间.接下来$n$行,每行两个数$l,r$表示$n$只小鸟初始时的头和尾的$x$坐标. 输出格式 输出一个 ...
- [CSP-S模拟测试]:Weed(线段树)
题目描述 $duyege$的电脑上面已经长草了,经过辨认上面有金坷垃的痕迹.为了查出真相,$duyege$准备修好电脑之后再进行一次金坷垃的模拟实验.电脑上面有若干层金坷垃,每次只能在上面撒上一层高度 ...
- [CSP-S模拟测试]:光线追踪(线段树)
题目背景 初中时的乔猫试着组建了$NEWorld$开发组,可是不久之后却因为合作上的问题(和乔猫工程水平差,代码混乱的问题),开发组成员之间常常产生矛盾,关系越来越不如以前......一年下来,受到长 ...
- [CSP-S模拟测试]:椎(线段树维护区间最值和单调栈)
题目描述 虽不能至,心向往之. $Treap=Tree+Heap$ 椎$=$树$+$堆 小$\pi$学习了计算机科学中的数据结构$Treap$. 小$\pi$知道$Treap$指的是一种树. 小$\p ...
- [CSP-S模拟测试]:string(线段树)
题目描述 给定一个由小写字母组成的字符串$s$. 有$m$次操作,每次操作给定$3$个参数$l,r,x$. 如果$x=1$,将$s[l]~s[r]$升序排序: 如果$x=0$,将$s[l]~s[r]$ ...
- [CSP-S模拟测试]:Permutation(线段树+拓扑排序+贪心)
题目描述 你有一个长度为$n$的排列$P$与一个正整数$K$你可以进行如下操作若干次使得排列的字典序尽量小对于两个满足$|i−j|\geqslant K$且$|P_i−P_j|=1$的下标$i$与$j ...
- [CSP-S模拟测试]:f(Trie树+二分答案+meet in middle+two pointers)
题目传送门(内部题67) 输入格式 第一行,三个整数$n$.$k$.$p$.第二行,$n$个自然数,表示$\{a_i\}$. 输出格式 输出一行,两个自然数,表示$f(res)$.$res$. 样例 ...
- ZOJ 3349 Special Subsequence 简单DP + 线段树
同 HDU 2836 只不过改成了求最长子串. DP+线段树单点修改+区间查最值. #include <cstdio> #include <cstring> #include ...
- hdu 3016 dp+线段树
Man Down Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...
- cf834D(dp+线段树区间最值,区间更新)
题目链接: http://codeforces.com/contest/834/problem/D 题意: 每个数字代表一种颜色, 一个区间的美丽度为其中颜色的种数, 给出一个有 n 个元素的数组, ...
随机推荐
- paper 149:Deep Learning 学习笔记(一)
1. 直接上手篇 台湾李宏毅教授写的,<1天搞懂深度学习> slideshare的链接: http://www.slideshare.net/tw_dsconf/ss-62245351? ...
- 北风设计模式课程---20、UML类图介绍
北风设计模式课程---20.UML类图介绍 一.总结 一句话总结: 不仅要通过视频学,还要看别的博客里面的介绍,搜讲解,搜作用,搜实例 设计模式都是对生活的抽象,比如用户获得装备,我可以先装备工厂先生 ...
- 信息安全-攻击-XSS:XSS/CSS 攻击
ylbtech-信息安全-攻击-XSS:XSS/CSS 攻击 XSS攻击通常指的是通过利用网页开发时留下的漏洞,通过巧妙的方法注入恶意指令代码到网页,使用户加载并执行攻击者恶意制造的网页程序.这些恶意 ...
- WebBrowser元素定位的常用方法
在delphi中想要使用WebBrowser控件,需要一了解一些浏览器和网站制作的知识.操作元素(增删改查).需要提前了解HTML DOM.
- USACO 6.5 章节 世界上本没有龙 屠龙的人多了也便有了
All Latin Squares 题目大意 n x n矩阵(n=2->7) 第一行1 2 3 4 5 ..N 每行每列,1-N各出现一次,求总方案数 题解 n最大为7 显然打表 写了个先数值后 ...
- 数论---lcm和gcd
cd即最大公约数,lcm即最小公倍数. 首先给出a×b=gcd×lcm 证明:令gcd(a,b)=k,a=xk,b=yk,则a×b=xykk,而lcm=xyk,所以ab=gcd*lcm. 所以求lcm ...
- selenium:Xpath定位详解
xpath定位在业界被戏称为元素定位的"屠龙宝刀",宝刀在手,武林我有.现在我们就来详解xpath定位方法. 一.xpath通过元素属性定位 xpath可以通过元素的属性来定位,如 ...
- ThinkPHP内置标签库原理(Cx标签库)
任何一个模板引擎的功能都不可能是为你量身定制的,具有一个良好的可扩展 机制也是模板引擎的另外一个考量,Smarty采用的是插件方法来实现扩展,ThinkTemplate由于采用了标签库技术,比Smar ...
- [fw]谈EXPORT_SYMBOL使用
EXPORT_SYMBOL只出现在2.6内核中,在2.4内核默认的非static 函数和变量都会自动导入到kernel 空间的, 都不用EXPORT_SYMBOL() 做标记的.2.6就必须用EXPO ...
- [Fw]初探linux中断系统(2)
初探linux中断系统(2) 中断系统初始化的过程 用来初始化中断系统的函数位于arch/x86/kernel/irqinit.c,定义如下 void __init init_IRQ(void){ i ...