Problem Description
Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted and processed on different machines on different days. 
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
 
Input
On the first line comes an integer T(T<=20), indicating the number of test cases.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
 
Output
For each test case, print “Case x: ” first, where x is the case number. If there exists a feasible schedule to finish all the tasks, print “Yes”, otherwise print “No”.
Print a blank line after each test case.
 
Sample Input
2
4 3
1 3 5
1 1 4
2 3 7
3 5 9
2 2
2 1 3
1 2 2
 
Sample Output
Case 1: Yes
Case 2: Yes
 
给N个任务,M台机器。每个任务有最早才能开始做的时间S,deadline E,和持续工作的时间P。每个任务可以分段进行,但是在同一时刻,一台机器最多只能执行一个任务. 问存不存在可行的工作时间。

由于时间<=500且每个任务都能断断续续的执行,那么我们把每一天时间作为一个节点来用网络流解决该题.
建图: 源点s(编号0), 时间1-500天编号为1到500, N个任务编号为500+1 到500+N, 汇点t(编号501+N).
源点s到每个任务i有边(s, i, Pi)
每一天到汇点有边(j, t, M) (其实这里的每一天不一定真要从1到500,只需要取那些被每个任务覆盖的每一天即可)
如果任务i能在第j天进行,那么有边(i, j, 1) 注意由于一个任务在一天最多只有1台机器执行,所以该边容量为1,不能为INF或M哦.
最后看最大流是否 == 所有任务所需要的总天数.

 #include <bits/stdc++.h>

 using namespace std;
const int maxn = ;
const int inf = 0x3f3f3f3f;
struct Edge
{
int from,to,cap,flow;
Edge (int f,int t,int c,int fl)
{
from=f,to=t,cap=c,flow=fl;
}
};
struct Dinic
{
int n,m,s,t;
vector <Edge> edge;
vector <int> G[maxn];//存图
bool vis[maxn];//标记每点是否vis过
int cur[maxn];//当前弧优化
int dep[maxn];//标记深度
void init(int n,int s,int t)//初始化
{
this->n=n;this->s=s;this->t=t;
edge.clear();
for (int i=;i<n;++i) G[i].clear();
}
void addedge (int from,int to,int cap)//加边,单向边
{
edge.push_back(Edge(from,to,cap,));
edge.push_back(Edge(to,from,,));
m=edge.size();
G[from].push_back(m-);
G[to].push_back(m-);
}
bool bfs ()
{
queue<int> q;
while (!q.empty()) q.pop();
memset(vis,false,sizeof vis);
vis[s]=true;
dep[s]=;
q.push(s);
while (!q.empty()){
int u=q.front();
//printf("%d\n",u);
q.pop();
for (int i=;i<G[u].size();++i){
Edge e=edge[G[u][i]];
int v=e.to;
if (!vis[v]&&e.cap>e.flow){
vis[v]=true;
dep[v]=dep[u]+;
q.push(v);
}
}
}
return vis[t];
}
int dfs (int x,int mi)
{
if (x==t||mi==) return mi;
int flow=,f;
for (int &i=cur[x];i<G[x].size();++i){
Edge &e=edge[G[x][i]];
int y=e.to;
if (dep[y]==dep[x]+&&(f=dfs(y,min(mi,e.cap-e.flow)))>){
e.flow+=f;
edge[G[x][i]^].flow-=f;
flow+=f;
mi-=f;
if (mi==) break;
}
}
return flow;
}
int max_flow ()
{
int ans = ;
while (bfs()){
memset(cur,,sizeof cur);
ans+=dfs(s,inf);
}
return ans;
}
}dinic;
int full_flow;
int main()
{
int casee = ;
//freopen("de.txt","r",stdin);
int T;scanf("%d",&T);
while (T--){
int n,m;
full_flow = ;
scanf("%d%d",&n,&m);
int src = ,dst = ++n;
dinic.init(++n,src,dst);
bool vis[maxn];
memset(vis,false,sizeof vis);
for (int i=;i<=n;++i){
int p,s,e;
scanf("%d%d%d",&p,&s,&e);
full_flow+=p;
dinic.addedge(src,i+,p);
for (int j=s;j<=e;++j){
vis[j]=true;
dinic.addedge(i+,j,);
}
}
for (int i=;i<maxn;++i){
if (vis[i])
dinic.addedge(i,dst,m);
}
printf("Case %d: ",++casee);
if (dinic.max_flow()==full_flow){//dinic.max_flow()只能跑一遍
printf("Yes\n\n");
}
else
printf("No\n\n");
}
return ;
}

hdu 3572 Task Schedule (Dinic模板)的更多相关文章

  1. hdu 3572 Task Schedule (dinic算法)

    pid=3572">Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  2. HDU 3572 Task Schedule(拆点+最大流dinic)

    Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  3. hdu 3572 Task Schedule(最大流&amp;&amp;建图经典&amp;&amp;dinic)

    Task Schedule Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) To ...

  4. HDU 3572 Task Schedule (最大流)

    C - Task Schedule Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  5. hdu 3572 Task Schedule

    Task Schedule 题意:有N个任务,M台机器.每一个任务给S,P,E分别表示该任务的(最早开始)开始时间,持续时间和(最晚)结束时间:问每一个任务是否能在预定的时间区间内完成: 注:每一个任 ...

  6. 解题报告:hdu 3572 Task Schedule(当前弧优化Dinic算法)

    Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...

  7. HDU 3572 Task Schedule(ISAP模板&amp;&amp;最大流问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=3572 题意:m台机器.须要做n个任务. 第i个任务.你须要使用机器Pi天,且这个任务要在[Si  , ...

  8. hdu 3572 Task Schedule 网络流

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3572 Our geometry princess XMM has stoped her study i ...

  9. 图论--网络流--最大流 HDU 3572 Task Schedule(限流建图,超级源汇)

    Problem Description Our geometry princess XMM has stoped her study in computational geometry to conc ...

随机推荐

  1. ueditor 图片粘贴上传,实现图文粘贴,图片自动上传

    如何做到 ueditor批量上传word图片? 1.前端引用代码 <!DOCTYPEhtmlPUBLIC"-//W3C//DTD XHTML 1.0 Transitional//EN& ...

  2. JS当中的无限分类递归树

    列表转换成树形结构方法定义: //javascript 树形结构 function toTree(data) { // 删除 所有 children,以防止多次调用 data.forEach(func ...

  3. python类与对象练习题扑克牌

    #定义一个扑克类,属性是颜色,数字.#定义一个手类,属性是扑克牌得颜色数字#定义一个人类,属性是左手,右手.类里定义一些方法,比如交换,展示 class Poker : def __init__(se ...

  4. C# 后台报错输出到日志

    1.C# 方法 /// <summary> /// 异常处理 /// </summary> /// <returns></returns> public ...

  5. spring cloud gateway 拦截request Body

    在接入Spring-Cloud-Gateway时,可能有需求进行缓存Json-Body数据或者Form-Urlencoded数据的情况. 由于Spring-Cloud-Gateway是以WebFlux ...

  6. 二分查找法:x 的平方根

    实现 int sqrt(int x) 函数. 由于返回类型是整数,结果只保留整数的部分,小数部分将被舍去. public int mySqrt(int x) { long left=0; long r ...

  7. 美化Windows

    更改壁纸 https://www.omgubuntu.co.uk/2010/09/a-look-back-at-every-ubuntu-default-wallpaper google: ubunt ...

  8. MSDN上关于WinDbg的手册

    参考:http://msdn.microsoft.com/en-us/library/windows/hardware/ff540507(v=vs.85).aspx 这是最靠谱的参考了,比.hh要直观 ...

  9. 用其他音乐源帮帮网易云,Android听歌利器

    镜像文章 1.用其他音乐源帮帮网易云,Ubuntu听歌利器 2.用其他音乐源帮帮网易云,Windows听歌利器 1.TaiChi模块简介 TaiChi(太极)是一款免解锁,免root,就能够运行 Xp ...

  10. spring注解开发:ComponentScan组件扫描

    在使用xml方式配置时,我们只需要在xml中配置如下代码: <context:component-scan base-package="包名"></context ...