题意

  有 $a$ 个 $0$,$b$ 个 $1$,$c$ 个 $2$,$d$ 个 $3$,求有多少种长度为 $n$ 且不包含 $0123$ 这个子串的字符串个数。

  $n\le 1000,\space a+b+c+d\le 500$

题解

方法1 推式子卷积

方法2 容斥

传送门

讲得很清楚,这里不再赘述

【TJOI 2019】唱、跳、rap和篮球的更多相关文章

  1. [bzoj5510]唱跳rap和篮球

    显然答案可以理解为有(不是仅有)0对情况-1对情况+2对情况-- 考虑这个怎么计算,先计算这t对情况的位置,有c(n-3t,t)种情况(可以理解为将这4个点缩为1个,然后再从中选t个位置),然后相当于 ...

  2. 将Android手机无线连接到Ubuntu实现唱跳Rap

    您想要将Android设备连接到Ubuntu以传输文件.查看Android通知.以及从Ubuntu桌面发送短信 – 你会怎么做?将文件从手机传输到PC时不要打电话给自己:使用GSConnect就可以. ...

  3. [TJOI2019]唱、跳、rap和篮球_生成函数_容斥原理_ntt

    [TJOI2019]唱.跳.rap和篮球 这么多人过没人写题解啊 那我就随便说说了嗷 这题第一步挺套路的,就是题目要求不能存在balabala的时候考虑正难则反,要求必须存在的方案数然后用总数减,往往 ...

  4. [TJOI2019]唱、跳、rap和篮球——NTT+生成函数+容斥

    题目链接: [TJOI2019]唱.跳.rap和篮球 直接求不好求,我们考虑容斥,求出至少有$i$个聚集区间的方案数$ans_{i}$,那么最终答案就是$\sum\limits_{i=0}^{n}(- ...

  5. [luogu5339] [TJOI2019]唱、跳、rap和篮球(容斥原理+组合数学)(不用NTT)

    [luogu5339] [TJOI2019]唱.跳.rap和篮球(容斥原理+组合数学)(不用NTT) 题面 略 分析 首先考虑容斥,求出有i堆人讨论的方案. 可以用捆绑法,把每堆4个人捆绑成一组,其他 ...

  6. 「TJOI2019」唱、跳、rap 和篮球 题解

    题意就不用讲了吧-- 鸡你太美!!! 题意: 有 \(4\) 种喜好不同的人,分别最爱唱.跳. \(rap\).篮球,他们个数分别为 \(A,B,C,D\) ,现从他们中挑选出 \(n\) 个人并进行 ...

  7. [TJOI2019]唱,跳,rap,篮球(生成函数,组合数学,NTT)

    算是补了个万年大坑了吧. 根据 wwj 的题解(最准确),设一个方案 \(S\)(不一定合法)的鸡你太美组数为 \(w(S)\). 答案就是 \(\sum\limits_{S}[w(S)=0]\). ...

  8. 【题解】Luogu P5339 [TJOI2019]唱、跳、rap和篮球

    原题传送门 这题zsy写的是\(O(n^2)\),还有NTT\(O(n^2\log n)\)的做法.我的是暴力,\(O(\frac{a b n}{4})\),足够通过 考虑设\(f(i)\)表示序列中 ...

  9. [TJOI2019]唱、跳、rap和篮球

    嘟嘟嘟 TJ律师函警告 20分暴力比较好拿,因为每一种学生可以理解为无限多,那么总方案数就是\(C_{n} ^ {4}\),然后我们枚举至少讨论cxk的有几组,容斥即可. 需要注意的是,容斥的时候还要 ...

随机推荐

  1. Python——作业12(选做)选中矩阵的每行或每列画出对应的折线图(python programming)

    import os import platform import sys from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5 ...

  2. Delphi动态创建菜单

    在程序运行中动态创建菜单,主要使用TMeunItem类,所有菜单的条目都是TMenuItem的一个实例. 打开Delphi7集成开发环境,在默认新建工程里,放置一个Button1按钮和MainMenu ...

  3. 人性化的Requests模块(响应与编码、header处理、cookie处理、重定向与历史记录、代理设置)

    Requests库是第三方模块,需要额外进行安装.Requests是一个开源库 pip install requests 去GitHub下载回来,进入解压文件,运行setup.py 比urllib2实 ...

  4. ubuntu 设置qt程序开机启动

    1.建立一个桌面文件,forklift-app.desktop Name填写程序的名字 Exec执行程序的路径 [Desktop Entry] Version=1.0 Name=forklift-ap ...

  5. Django与Session

    Session Session的由来 ​ Cookie虽然在一定程度上解决了"保持状态"的需求,但是由于Cookie本身最大支持4096字节,以及Cookie本身保存在客户端,可能 ...

  6. ioctl接口内容操作

    int ioctl( int fd, int request, .../* void *arg */ ) 详解 第三个参数总是一个指针,但指针的类型依赖于request 参数.我们可以把和网络相关的请 ...

  7. MHA搭建

    https://metacpan.org 下载perl依赖包的网站 ##################上传安装依赖包#################### mkdir /opt/soft_file ...

  8. C++学习 之 变量和常量的使用(笔记)

    一.变量 1.对变量含义的理解: 变量就像是经过工厂加工后有一定容量的容器.在变量定义时,系统充当了工厂的角色,按照类型为变量分配相应的空间.定义完成的变量可以存放相应类型的值,存放的值大于变量所能接 ...

  9. L2-014. 列车调度(Dilworth定理)

    火车站的列车调度铁轨的结构如下图所示. Figure 两端分别是一条入口(Entrance)轨道和一条出口(Exit)轨道,它们之间有N条平行的轨道.每趟列车从入口可以选择任意一条轨道进入,最后从出口 ...

  10. go语言坑之并发访问map

    fatal error: concurrent map read and map write 并发访问map是不安全的,会出现未定义行为,导致程序退出.所以如果希望在多协程中并发访问map,必须提供某 ...