1.改造二叉树

【题目描述】

小Y在学树论时看到了有关二叉树的介绍:在计算机科学中,二叉树是每个结点最多有两个子结点的有序树。通常子结点被称作“左孩子”和“右孩子”。二叉树被用作二叉搜索树和二叉堆。随后他又和他人讨论起了二叉搜索树。

什么是二叉搜索树呢?二叉搜索树首先是一棵二叉树。设key[p]表示结点p上的数值。对于其中的每个结点p,若其存在左孩子lch,则key[p]>key[lch];若其存在右孩子rch,则key[p]<key[rch];注意,本题中的二叉搜索树应满足对于所有结点,其左子树中的key小于当前结点的key,其右子树中的key大于当前结点的key。

小Y与他人讨论的内容则是,现在给定一棵二叉树,可以任意修改结点的数值。修改一个结点的数值算作一次修改,且这个结点不能再被修改。若要将其变成一棵二叉搜索树,且任意时刻结点的数值必须是整数(可以是负整数或0),所要的最少修改次数。

相信这一定难不倒你!请帮助小Y解决这个问题吧。

【输入格式】

第一行一个正整数n表示二叉树结点数。结点从1~n进行编号。

第二行n个正整数用空格分隔开,第i个数ai表示结点i的原始数值。

此后n - 1行每行两个非负整数fa, ch,第i + 2行描述结点i + 1的父亲编号fa,以及父子关系ch,(ch = 0 表示i + 1为左儿子,ch = 1表示i + 1为右儿子)。

结点1一定是二叉树的根。

【输出格式】

仅一行包含一个整数,表示最少的修改次数。

【样例输入】

3

2 2 2

1 0

1 1

【样例输出】

2

【数据范围】

20 % :n <= 10 , ai <= 100.

40 % :n <= 100 , ai <= 200

60 % :n <= 2000 .

100 % :n <= 10 ^ 5 ,  ai < 2 ^ 31.

思路:

  把这棵二叉树中序遍历

  建立一个新的序列

  我们会发现答案就是序列长度减去里面最长上升子序列的长度

  但是

  我们接着又会发现

  里面会有错误的情况

  所以我们要把当前序列变成一个处理后的序列(a[i]-=i)

  然后跑一遍最长不下降子序列

  答案就是序列长度减去最长不下降序列长度

  但是我们又会发现数据范围是10^5

  最长不下降序列是n^2的会超时

  所以我们优化一下最长上升子序列的方法

  舍弃具体序列元素转为只求长度

  我们可以得出这样的方法:

int LIS()
{
int num_lis=,pos;
lis[num_lis]=-0x7ffffff;
for(int i=;i<=n;i++)
{
tree_1[i]-=i;
if(tree_1[i]>=lis[num_lis])
{
lis[++num_lis]=tree_1[i];
continue;
}
pos=upper_bound(lis+,lis+num_lis+,tree_1[i])-lis;
lis[pos]=tree_1[i];
}
return num_lis;
}

  现在我们可以的很轻松的得出答案

  然后ac了

来,上代码:

#include<cstdio>
#include<algorithm> using namespace std; int n,ai[],if_Z,lc[],rc[],new_tree=;
int tree_1[],lis[]; char word; inline void read_int(int &now_001)
{
now_001=,if_Z=;word=getchar();
while(word<''||word>'')
{
if(word=='-') if_Z=-;
word=getchar();
}
while(word<=''&&word>='')
{
now_001=now_001*+(int)(word-'');
word=getchar();
}
now_001*=if_Z;
} void dfs(int now)
{
/*
if(now>n) return ;
dfs(now*2),dfs(now*2+1);
tree_1[++new_tree]=tree[now];
*/
if(lc[now]) dfs(lc[now]);
tree_1[++new_tree]=ai[now];
if(rc[now]) dfs(rc[now]);
} int LIS()
{
int num_lis=,pos;
lis[num_lis]=-0x7ffffff;
for(int i=;i<=n;i++)
{
tree_1[i]-=i;
if(tree_1[i]>=lis[num_lis])
{
lis[++num_lis]=tree_1[i];
continue;
}
pos=upper_bound(lis+,lis+num_lis+,tree_1[i])-lis;
lis[pos]=tree_1[i];
}
return num_lis;
} int main()
{
read_int(n);
for(int i=;i<=n;i++) read_int(ai[i]);
int father,lor;
for(int i=;i<=n;i++)
{
read_int(father),read_int(lor);
//tree[father*2+lor]=ai[i];
if(lor==) lc[father]=i;
else rc[father]=i;
}
dfs();
int ans=n-LIS();
printf("%d\n",ans);
return ;
}

改造二叉树 (长乐一中模拟赛day2T1)的更多相关文章

  1. 数字对 (长乐一中模拟赛day2T2)

    2.数字对 [题目描述] 小H是个善于思考的学生,现在她又在思考一个有关序列的问题. 她的面前浮现出一个长度为n的序列{ai},她想找出一段区间[L, R](1 <= L <= R < ...

  2. 全国信息学奥林匹克联赛 ( NOIP2014) 复赛 模拟题 Day1 长乐一中

    题目名称 正确答案  序列问题 长途旅行 英文名称 answer sequence travel 输入文件名 answer.in sequence.in travel.in 输出文件名 answer. ...

  3. Java 第十一届 蓝桥杯 省模拟赛 第十层的二叉树

    一棵10层的二叉树,最多包含多少个结点? 注意当一棵二叉树只有一个结点时为一层. 答案提交 这是一道结果填空的题,你只需要算出结果后提交即可.本题的结果为一个整数,在提交答案时只填写这个整数,填写多余 ...

  4. 全国信息学奥林匹克联赛(NOIP2014)复赛 模拟题Day2 长乐一中

    题目名称 改造二叉树 数字对 交换 英文名称 binary pair swap 输入文件名 binary.in pair.in swap.in 输出文件名 binary.out pair.out sw ...

  5. 10.26最后的模拟DAY2 改造二叉树[中序遍历+严格递增的最长不下降子序列]

    改造二叉树 [题目描述] 小Y在学树论时看到了有关二叉树的介绍:在计算机科学中,二叉树是每个结点最多有两个子结点的有序树.通常子结点被称作“左孩子”和“右孩子”.二叉树被用作二叉搜索树和二叉堆.随后他 ...

  6. 【oi模拟赛】长乐中学-不知道多少年

    改造二叉树 [题目描述] 小Y在学树论时看到了有关二叉树的介绍:在计算机科学中,二叉树是每个结点最多有两个子结点的有序树.通常子结点被称作"左孩子"和"右孩子" ...

  7. [noip模拟]改造二叉树<LIS>

    1.改造二叉树 [题目描述] 小Y在学树论时看到了有关二叉树的介绍:在计算机科学中,二叉树是每个结点最多有两个子结点的有序树.通常子结点被称作“左孩子”和“右孩子”.二叉树被用作二叉搜索树和二叉堆.随 ...

  8. [GRYZ]寒假模拟赛

    写在前面 这是首次广饶一中的OIERS自编自导,自出自做(zuo)的模拟赛. 鉴于水平气压比较低,机(wei)智(suo)的WMY/XYD/HYXZC就上网FQ下海找了不少水(fei)题,经过他们优( ...

  9. CH Round #49 - Streaming #4 (NOIP模拟赛Day2)

    A.二叉树的的根 题目:http://www.contesthunter.org/contest/CH%20Round%20%2349%20-%20Streaming%20%234%20(NOIP 模 ...

随机推荐

  1. linux多线程-互斥&条件变量与同步

    多线程代码问题描述 我们都知道,进程是操作系统对运行程序资源分配的基本单位,而线程是程序逻辑,调用的基本单位.在多线程的程序中,多个线程共享临界区资源,那么就会有问题: 比如 #include < ...

  2. 使用 Canvas 和 JavaScript 创建逼真的下雨效果

    HTML5 规范引进了很多新特性,其中最令人期待的之一就是 Canvas 元素,HTML5 Canvas 提供了通过 JavaScript 绘制图形的方法,非常强大.这里向大家展示一个使用 Canva ...

  3. JSON详解 .net

    之前json掌握的不好,浪费了好多时间在查找一些json有关的转换问题,我所知道的方法只有把json序列化和反序列化一下,但是太麻烦了我觉得,所以就在找一些更简单又方便使用的方法.也许这个会有用吧,所 ...

  4. SharePoint 服务器端对象模型操作用户组(创建/添加/删除)

    摘要:几个操作SharePoint用户组的方法,已经测试通过,但是没有提升权限,如果没有权限的人操作,需要提升权限(提权代码附后).大家需要的话,可以参考下,写在这里也给自己留个备份~~ //创建用户 ...

  5. android XMl 解析神奇xstream 四: 将复杂的xml文件解析为对象

    前言:对xstream不理解的请看: android XMl 解析神奇xstream 一: 解析android项目中 asset 文件夹 下的 aa.xml 文件 android XMl 解析神奇xs ...

  6. Android根据APP包名启动应用

    public void openApp(String packageName, Context context) { PackageManager packageManager = context.g ...

  7. iOS 自动布局详细介绍

    1. 自动布局的理解 iOS自动布局很有用,可以在不同size的屏幕上运行,原先看的头痛,还是习惯用最蠢的[UIScreen mainScreen].bounds.size.width等来布局,后来实 ...

  8. App开发流程之配置Info.plist文件

    Info.plist文件控制应用的全局配置,例如bundle name,display name. 先来看一下默认创建的Info.plist文件 右键左侧的Info.plist文件,可以open as ...

  9. C语言错误之--初始值(低级错误)

    今天犯了一个低级错误,虽然低级,但是也不能忽视,一个低级错误以后可能小则浪费时间和精力,大则酿成整个app的项目bug.    

  10. linux ssh更换默认的22端口

    1.修改配置文件:/etc/ssh/sshd_config 2.先将Port 22 前面的 # 号去掉,并另起一行.如定义SSH端口号为26611 ,则输入 3.修改完毕后,重启SSH服务,并退出当前 ...