题目描述

给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数。

输入输出格式

输入格式:

输入文件名为factor.in。

共一行,包含5 个整数,分别为 a ,b ,k ,n ,m,每两个整数之间用一个空格隔开。

输出格式:

输出共1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007 取模后的结果。

输入输出样例

输入样例#1:

1 1 3 1 2
输出样例#1:

3

说明

【数据范围】

对于30% 的数据,有 0 ≤k ≤10 ;

对于50% 的数据,有 a = 1,b = 1;

对于100%的数据,有 0 ≤k ≤1,000,0≤n, m ≤k ,且n + m = k ,0 ≤a ,b ≤1,000,000。

noip2011提高组day2第1题

代码

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
int h[][],a,b,k,n,m,Max=;
ll ans; ll pow(ll x,ll n,int Max){
ll res=;
while(n>){
if(n&) res=(res*x)%Max;
x=(x*x)%Max;
n>>=;
}
return res%Max;
} int main(){
scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);
for(int i=;i<=;i++){
h[i][i]=h[i][]=;
}
for(int i=;i<=;i++){
for(int j=;j<=i;j++){
h[i][j]=(h[i-][j]+h[i-][j-])%Max;
}
}
ans=h[k+][m+]; ans=(ans*(pow(a,n,Max)*pow(b,m,Max)))%Max;
cout<<ans<<endl;
return ;
}

杨辉三角形多项式定理看这里:http://wenku.baidu.com/link?url=c032QL7g165FSQy5GiSPGUViuY3Xc1JuoQ5fI0HQDt0X_OjZ6jlWD2iEt5vJILw6NzD0ribDTVCC96de7HInt5dj53aQJIJH-caUUEh6aai

转载:

杨辉三角形与快速幂的结合运用,具体就是

用杨辉三角算出(x+y)^k中某项的系数再乘以各自a^k乘以b^k的数积。

唯一的注意点是杨辉三角形的层数是k+1,数组要多开一层

洛谷 P1313 计算系数 Label:杨辉三角形 多项式计算的更多相关文章

  1. 【题解】洛谷P1313 [NOIP2011TG]计算系数(组合+二次项展开)

    洛谷P1313:https://www.luogu.org/problemnew/show/P1313 思路 本题就是考查二次项展开 根据定理有:(ax+by)k=∑ki=0Cik*aibk-ixiy ...

  2. 洛谷P1313 计算系数【快速幂+dp】

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

  3. 洛谷 P1313 计算系数 解题报告

    P1313 计算系数 题目描述 给定一个多项式\((by+ax)^k\),请求出多项式展开后\(x^n*y^m\)项的系数. 输入输出格式 输入格式: 共一行,包含5个整数,分别为\(a,b,k,n, ...

  4. 洛谷P1313 计算系数

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

  5. 洛谷P1313 [NOIP2011提高组Day2T1]计算系数

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

  6. 【洛谷p1313】计算系数

    (%%%hmr) 计算系数[传送门] 算法呀那个标签: (越来越懒得写辽)(所以今天打算好好写一写) 首先(ax+by)k的计算需要用到二项式定理: 对于(x+y)k,有第r+1项的系数为:Tr+1= ...

  7. 洛谷 P3711 - 仓鼠的数学题(多项式)

    洛谷题面传送门 提供一种不太一样的做法. 假设要求的多项式为 \(f(x)\).我们考察 \(f(x)-f(x-1)\),不难发现其等于 \(\sum\limits_{i=0}^na_ix^i\) 考 ...

  8. 洛谷P4233 射命丸文的笔记 【多项式求逆】

    题目链接 洛谷P4233 题解 我们只需求出总的哈密顿回路个数和总的强联通竞赛图个数 对于每条哈密顿回路,我们统计其贡献 一条哈密顿回路就是一个圆排列,有\(\frac{n!}{n}\)种,剩余边随便 ...

  9. 【数论】洛谷P1313计算系数

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

随机推荐

  1. linux 如何清理僵尸进程

    今天在维护服务器的时候,发现有5个nova-novncproxy的僵尸进程. 26327 ?        S      0:05  \_ /usr/bin/python /usr/bin/nova- ...

  2. BZOJ 1600

    开始刷一些USACO月赛题了.. 这题简单递推就不说了. 然后我们发现暴力递推是$O(n^2)$的.看起来非常慢. 这道题拥有浓厚的数学色彩,因此我们可以从数学它的规律上找突破口. (于是暴力大法好, ...

  3. 【系统】CentOS、Ubuntu、Debian三个linux比较异同

    CentOS.Ubuntu.Debian三个linux比较异同 2014-07-31 12:58             53428人阅读             评论(6)             ...

  4. 对 Linux 新手非常有用的 20 个命令

    参考:http://www.oschina.net/translate/useful-linux-commands-for-newbies 英文原文:http://www.tecmint.com/us ...

  5. Android 调用浏览器和嵌入网页

    Android App开发时由于布局相对麻烦,很多时候一个App通常是由html5和原生控件相结合而成.简单的网页应用可以直接内嵌html5页面即可,对于需要调用复杂的底层功能时则采用原生控件的方式进 ...

  6. 菜单栏展开和收起效果(纯js)

    2014年6月25日 15:36:29 需要关注的是: 1.用cookie保存用户当前点击的菜单项,不打扰后端代码 2.通过数学计算得到要显示和隐藏的div 3.点击事件是动态绑定到a标签上的,因此当 ...

  7. DML操作对索引的影响

    一:delete操作 现在我们已经知道,索引都是以B树的形式存在的,既然是B树,我们就要看看他们的叶子节点和分支结点,先准备点测试数据,如下图: 按 Ctrl+C 复制代码 按 Ctrl+C 复制代码 ...

  8. 如何在Win8系统上建立WIFI热点

    1.首先将鼠标移到桌面左下角,单击右键,在弹出的快捷菜单中找到“命令提示符(管理员)”,点击 2.点击后,系统就以管理员权限打开了命令提示符,在命令提示符中输入以下命令“netsh wlan set ...

  9. 【转载】C++ 值传递、指针传递、引用传递详解

    原文链接:http://www.cnblogs.com/yanlingyin/ 值传递: 形参是实参的拷贝,改变形参的值并不会影响外部实参的值.从被调用函数的角度来说,值传递是单向的(实参->形 ...

  10. .net学习笔记---Asp.net的生命周期之二页生命周期

    用户请求 从 用户角度来说,我不管你后台经历了什么,我只想要我请求的页面.请求到服务器端,服务器必须得有所表示的是吧,即使不想搭理人家也得让IIS给人家说声:找不到服务器.请求来到服务器端,肯定要让服 ...