枚举$B$串的每个后缀,统计出该后缀所有满足条件的前缀。

考虑暴力搜索,设状态$(x,y,z)$表示当前需要考虑$A$从$x$开始的后缀,$B$从$y$开始的后缀,之前部分编辑距离为$z$。

那么首先用后缀数组+ST表求出两个后缀的lcp,$x$和$y$都可以向右跳那么多,且不产生任何代价。

如果此时匹配到了底,那么可以得到在一段区间$[L,R]$内,所有前缀都是合法的。注意到这种前缀只有$2K+1$种,所以可以使用差分前缀和来进行标记。

如果还没有匹配到底,那么有$3$种选择,分别是状态$(x+1,y,z+1)$、$(x,y+1,z+1)$以及$(x+1,y+1,z+1)$。

时间复杂度$O(n\log n+n3^k)$。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 100010
using namespace std;
char s[N],A[N],B[N];
int K,na,nb,n,m,i,j,rk[N],sa[N],height[N],tmp[N],cnt[N],Log[N],f[17][N],c[15],ans;
void suffixarray(int n,int m){
int i,j,k;n++;
for(i=0;i<n;i++)cnt[rk[i]=s[i]]++;
for(i=1;i<m;i++)cnt[i]+=cnt[i-1];
for(i=0;i<n;i++)sa[--cnt[rk[i]]]=i;
for(k=1;k<=n;k<<=1){
for(i=0;i<n;i++){
j=sa[i]-k;
if(j<0)j+=n;
tmp[cnt[rk[j]]++]=j;
}
sa[tmp[cnt[0]=0]]=j=0;
for(i=1;i<n;i++){
if(rk[tmp[i]]!=rk[tmp[i-1]]||rk[tmp[i]+k]!=rk[tmp[i-1]+k])cnt[++j]=i;
sa[tmp[i]]=j;
}
memcpy(rk,sa,n*sizeof(int));
memcpy(sa,tmp,n*sizeof(int));
if(j>=n-1)break;
}
for(j=rk[height[i=k=0]=0];i<n-1;i++,k++)
while(~k&&s[i]!=s[sa[j-1]+k])height[j]=k--,j=rk[sa[j]+1];
}
inline int ask(int x,int y){
int k=Log[y-x+1];
return min(f[k][x],f[k][y-(1<<k)+1]);
}
inline int lcp(int x,int y){
if(x>=na||y>=nb)return 0;
x=rk[x],y=rk[y+na+1];
if(x>y)swap(x,y);
return ask(x+1,y);
}
inline void col(int l,int r){
if(l<i)l=i;
if(r>=nb)r=nb-1;
c[l-i-na+K+2]++,c[r-i-na+K+3]--;
}
void dfs(int x,int y,int z){
int t=lcp(x,y);
x+=t,y+=t;
if(x==na||y==nb){
int c=K-(z+na-x);
if(c>=0)col(y-1-c,y-1+c);
return;
}
if(z==K)return;
z++;
dfs(x+1,y,z);
dfs(x,y+1,z);
dfs(x+1,y+1,z);
}
int main(){
scanf("%d%s%s",&K,A,B);
na=strlen(A),nb=strlen(B);
for(i=0;i<na;i++)s[n++]=A[i];
s[n++]='#';
for(i=0;i<nb;i++)s[n++]=B[i];
suffixarray(n,128);
for(i=2;i<=n;i++)Log[i]=Log[i>>1]+1;
for(i=1;i<=n;i++)f[0][i]=height[i];
for(j=1;j<17;j++)for(i=1;i+(1<<j-1)<=n;i++)f[j][i]=min(f[j-1][i],f[j-1][i+(1<<j-1)]);
for(m=2*K+1,i=0;i<nb;i++){
for(j=1;j<=m;j++)c[j]=0;
dfs(0,i,0);
for(j=1;j<=m;j++)if(c[j]+=c[j-1])ans++;
}
return printf("%d",ans),0;
}

  

BZOJ4340 : BJOI2015 隐身术的更多相关文章

  1. [BZOJ4340][BJOI2015]隐身术(后缀数组)

    考虑到K很小,于是可以暴搜每次用的是哪种操作,跳过AB相等的字符可以用SA求LCP加速. 主要流程就是,枚举B的每个后缀,对每个后缀统计合法前缀个数.DFS搜索每次决策,用SA跳过相同字符,当A或B匹 ...

  2. BZOJ4340:[BJOI2015]隐身术(后缀数组,ST表,DFS)

    Description 给定两个串A,B.请问B中有多少个非空子串和A的编辑距离不超过K? 所谓“子串”,指的是B中连续的一段.不同位置的内容相同的子串算作多个. 两个串之间的“编辑距离”指的是把一个 ...

  3. BZOJ.4340.[BJOI2015]隐身术(后缀数组 搜索)

    BZOJ \(Description\) 给定两个串\(S,T\)以及一个数\(k\),求\(T\)中有多少个子串,满足和\(S\)的编辑距离不超过\(k\). \(|S|+|T|\leq10^5,\ ...

  4. BJOI2015 隐身术

    落谷. Description 给你两个串 \(A.B\).询问 \(B\) 中有多少个非空子串和 \(A\) 的编辑距离不超过 \(K\). Solution 发现 \(K \le 5\),考虑可以 ...

  5. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  6. BZOJ 4337: BJOI2015 树的同构 树hash

    4337: BJOI2015 树的同构 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4337 Description 树是一种很常见的数 ...

  7. bzoj4337: BJOI2015 树的同构 树哈希判同构

    题目链接 bzoj4337: BJOI2015 树的同构 题解 树哈希的一种方法 对于每各节点的哈希值为hash[x] = hash[sonk[x]] * p[k]; p为素数表 代码 #includ ...

  8. 【BZOJ4337】BJOI2015 树的同构 括号序列

    [BZOJ4337]BJOI2015 树的同构 Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱 ...

  9. [BZOJ4337][BJOI2015]树的同构(树的最小表示法)

    4337: BJOI2015 树的同构 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1023  Solved: 436[Submit][Status ...

随机推荐

  1. Android 将可以按地点自动启动应用程序

    导读Android是一种基于Linux的自由及开放源代码的操作系统,主要使用于移动设备,如智能手机和平板电脑,由Google公司和开放手机联盟领导及开发.尚未有统一中文名称,中国大陆地区较多人使用“安 ...

  2. ZeroMQ(java)之I/O线程的实现与组件间的通信

    算是开始读ZeroMQ(java)的代码实现了吧,现在有了一个大体的了解,看起来实现是比较的干净的,抽象什么的不算复杂... 这里先来看看它的I/O线程的实现吧,顺带看看是如何实现组件的通信的.... ...

  3. Linux tcp_wrappers 详解

    tcp_wrappers是linux中一个安全机制[TCP_wrappers防火墙],一定程度上限制某种服务的访问权限,达到了保护系统的目的一. 要想用好tcp_wrappers,首先检查某种服务是否 ...

  4. Java锁之自旋锁详解

    锁作为并发共享数据,保证一致性的工具,在JAVA平台有多种实现(如 synchronized 和 ReentrantLock等等 ) .这些已经写好提供的锁为我们开发提供了便利,但是锁的具体性质以及类 ...

  5. 使用Webdriver执行JS小结

    首先,我们使用如下方式初始化driver: WebDriver driver = new FirefoxDriver(); JavascriptExecutor jse = (JavascriptEx ...

  6. cas单点注销失败Error Sending message to url endpoint

    最近在做cas单点登录时,由于是单点登录.必然会涉及到单点注销,然而在做单点注销时由于对cas注销机制不了解加之测试条件所致,所有测试都是在本机下完成(机器性能较低,没用虚拟机):导致折腾了很久.网上 ...

  7. windows下bat批处理实现守护进程

    本文转自网络,由于找不到原作者,因而无法知道出处.如果有幸让原作者看到,请联系我加上.先转载至此. 最近几天加班加疯掉了,天天晚上没法睡.开发部的一个核心程序总是会自己宕机,然后需要手工去起,而这个服 ...

  8. 在Android上使用fontAwesome

    再也不用做那些讨厌的小图标了! 从网上找了些资料,总结下在android上使用fontAwesome的方法. 1.到官网上下载资源包,找到其中的字体文件fontawesome-webfont.ttf, ...

  9. 利用 FFmpeg 和 ImageMagick, AVI 转 GIF(不失真)

    利用[TMPGEnc 4.0 XPress] 或 [TMPGEnc Video Mastering Works 5] 生成 AVI 这个视频编辑软件,可对每个帧进行操作 1.生成每个帧的 PNG ff ...

  10. mac os 显示文件列表命令 ls -a

    显示正常文件列表用ls就行了,但是要是想显示隐藏的文件,需要加-a