【BZOJ】2818: Gcd(欧拉函数/莫比乌斯)
http://www.lydsy.com/JudgeOnline/problem.php?id=2818
我很sb的丢了原来做的一题上去。。
其实这题可以更简单。。
设
$$f[i]=1+2 \times \phi (i) $$
那么答案就是
$$\sum_{p是质数} f[n/p]$$
就丢原来的题了。。。不写了。。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next) const int N=10000005;
int p[N], cnt, np[N], mu[N], g[N], sum[N];
void init() {
mu[1]=1;
for2(i, 2, N) {
if(!np[i]) p[++cnt]=i, mu[i]=-1, g[i]=1;
for1(j, 1, cnt) {
int t=p[j]*i; if(t>=N) break;
np[t]=1;
if(i%p[j]==0) { mu[t]=0; g[t]=mu[i]; break; }
mu[t]=-mu[i]; g[t]=mu[i]-g[i];
}
}
for2(i, 1, N) sum[i]=sum[i-1]+g[i];
} int main() {
init();
int n=getint();
ll ans=0;
int pos;
for(int i=1; i<=n; i=pos+1) {
pos=min(n/(n/i), n/(n/i));
ans+=(ll)(sum[pos]-sum[i-1])*(n/i)*(n/i);
}
printf("%lld\n", ans);
return 0;
}
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
Sample Output
HINT
hint
对于样例(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
Source
【BZOJ】2818: Gcd(欧拉函数/莫比乌斯)的更多相关文章
- BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4436 Solved: 1957[Submit][Status][Discuss ...
- ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...
- BZOJ 2818 Gcd(欧拉函数+质数筛选)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 9108 Solved: 4066 [Submit][Status][Discu ...
- 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)
P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...
- BZOJ 2818 GCD 【欧拉函数 || 莫比乌斯反演】
传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 2818: Gcd Time Limit: 10 Sec Memory Limit ...
- HYSBZ 2818 Gcd【欧拉函数/莫比乌斯】
I - Gcd HYSBZ - 2818 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample In ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...
- Bzoj-2818 Gcd 欧拉函数
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...
- 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】
用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...
随机推荐
- C/C++ 文件操作
C/C++ 文件操作大概有以下几种 1.C的文件操作: 2.C++的文件操作: 3.WINAPI的文件操作: 4.BCB库的文件操作: 5.特殊文件的操作. 当然了,水题时最常用的当然还是: freo ...
- TCP/IP协议原理【转载】
前述 各种L2数据网具有不同的通信协议与帧结构,其网络节点设备可以是各种类型的数据交换机(X.25.FR.Ethernet和ATM等分组交换机):而L3数据网(IP网或internet) ...
- wireshark http抓包命令行详解
This article is a quick and easy HowTo detailing the use of Wireshark or another network sniffing pr ...
- try---catch异常处理
try { sc.Send(msg); return; } catch (Exception ex) { //AlertInfo("发送失败," + ex); return ; }
- javascript动态添加form表单元素
2014年11月7日 17:10:40 之前写过几篇类似的文章,现在看来比较初级,弄一个高级的简单的 情景: 后台要上传游戏截图,截图数量不确定,因此使用动态添加input节点的方法去实现这个效果 主 ...
- Java面向对象的封装
封装是Java面向对象的三大特性之一,通常我们是通过包管理机制同时对类进行封装,隐藏其内部实现细节,通常开发中不允许直接操作类中的成员属性,所以属性一般设置为私有权限private,类中一般会给出一些 ...
- KBS2 SBS MBC 高清播放地址 + mplayer 播放 录制
网页flash播放KBS2 SBS MBC时占CPU资源太高,为了解决这个问题可以使用 mplayer播放器直接播放,还可以录制. 播放命令 mplayer http://pull.kktv8.com ...
- Java程序编译和运行的过程
Java整个编译以及运行的过程相当繁琐,本文通过一个简单的程序来简单的说明整个流程. 如下图,Java程序从源文件创建到程序运行要经过两大步骤:1.源文件由编译器编译成字节码(ByteCode) 2 ...
- HDU 2588 GCD (欧拉函数)
GCD Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u Submit Status De ...
- [Android Pro] Android 之使用LocalBroadcastManager解决BroadcastReceiver安全问题
参考博客: http://blog.csdn.net/t12x3456/article/details/9256609 http://blog.csdn.net/lihenair/article/de ...