http://www.lydsy.com/JudgeOnline/problem.php?id=2818

我很sb的丢了原来做的一题上去。。

其实这题可以更简单。。

$$f[i]=1+2 \times \phi (i) $$

那么答案就是

$$\sum_{p是质数} f[n/p]$$

就丢原来的题了。。。不写了。。

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next) const int N=10000005;
int p[N], cnt, np[N], mu[N], g[N], sum[N];
void init() {
mu[1]=1;
for2(i, 2, N) {
if(!np[i]) p[++cnt]=i, mu[i]=-1, g[i]=1;
for1(j, 1, cnt) {
int t=p[j]*i; if(t>=N) break;
np[t]=1;
if(i%p[j]==0) { mu[t]=0; g[t]=mu[i]; break; }
mu[t]=-mu[i]; g[t]=mu[i]-g[i];
}
}
for2(i, 1, N) sum[i]=sum[i-1]+g[i];
} int main() {
init();
int n=getint();
ll ans=0;
int pos;
for(int i=1; i<=n; i=pos+1) {
pos=min(n/(n/i), n/(n/i));
ans+=(ll)(sum[pos]-sum[i-1])*(n/i)*(n/i);
}
printf("%lld\n", ans);
return 0;
}

  


Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4

HINT

hint

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

Source

【BZOJ】2818: Gcd(欧拉函数/莫比乌斯)的更多相关文章

  1. BZOJ 2818: Gcd [欧拉函数 质数 线性筛]【学习笔记】

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss ...

  2. ACM学习历程—HYSBZ 2818 Gcd(欧拉函数 || 莫比乌斯反演)

    Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sam ...

  3. BZOJ 2818 Gcd(欧拉函数+质数筛选)

    2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 9108  Solved: 4066 [Submit][Status][Discu ...

  4. 洛谷P2568 GCD (欧拉函数/莫比乌斯反演)

    P2568 GCD 题目描述 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 输入输出格式 输入格式: 一个整数N 输出格式: 答案 输入输出样例 输入 ...

  5. BZOJ 2818 GCD 【欧拉函数 || 莫比乌斯反演】

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 2818: Gcd Time Limit: 10 Sec  Memory Limit ...

  6. HYSBZ 2818 Gcd【欧拉函数/莫比乌斯】

    I - Gcd HYSBZ - 2818 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample In ...

  7. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  8. UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)

    UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...

  9. Bzoj-2818 Gcd 欧拉函数

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x ...

  10. 51nod 1237 最大公约数之和 V3【欧拉函数||莫比乌斯反演+杜教筛】

    用mu写lcm那道卡常卡成狗(然而最后也没卡过去,于是写一下gcd冷静一下 首先推一下式子 \[ \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) \] \[ \sum_{i= ...

随机推荐

  1. HDU1068 最大独立点集

    Girls and Boys Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  2. 如何选择Html.RenderPartial和Html.RenderAction

    Html.RenderPartial与Html.RenderAction这两个方法都是用来在界面上嵌入用户控件的. Html.RenderPartial是直接将用户控件嵌入到界面上: <%Htm ...

  3. 排序稳定性stable

    stable排序 O(n^2): InsertionSort,BubbleSort O(nlgn): MergeSort O(n+k): CountSort, RadixSort,BucketSort ...

  4. Linux系统排查2——CPU负载篇

    本随笔介绍CPU负载的排查手段. 查看系统负载的工具:uptime,w,都能查看系统负载,系统平均负载是处于运行或不可打扰状态的进程的平均数, 可运行:运行态,占用CPU,或就绪态,等待CPU调度. ...

  5. git revert 用法

    git revert 撤销 某次操作,此次操作之前和之后的commit和history都会保留,并且把这次撤销作为一次最新的提交    * git revert HEAD                ...

  6. javascript十六进制数字和ASCII字符之间转换

    var hex="0x29";//十六进制 var charValue = String.fromCharCode(hex);//生成Unicode字符 var charCode ...

  7. POSIX线程--同时执行

    //#define _REENTRANT//#define _POSIX_C_SOURCE#include <iostream>#include <string>#includ ...

  8. C#学习笔记---修饰符,this关键字和static关键字

    1.  C#中类的修饰符: public 表示不限制对该类的访问  protected 表示只能从所在类和所在类派生的子类进行访问    private 只有其所在类才能访问 internal 只有对 ...

  9. 【Android 进阶】临时卸载root和恢复root功能

    [前言]为什么有这个需求? Q:首先,谈谈为啥想要root呢? A:有root才能有控制权,也才能折腾很多东西,比如:删删流氓软件,用用代理.软件自动安装等: Q:然后,那么为何又需要删除root呢? ...

  10. Xamarin.Android开发实践(十五)

    Xamarin.Android学习之应用程序首选项 一.前言 任何App都会存在设置界面,如果开发者利用普通控件并绑定监听事件保存设置,这 一过程会非常的枯燥,而且耗时.我们可以看到Android系统 ...