an introduction to conditional random fields
1.Structured prediction methods are essentially a combination of classification and graphical modeling.
2.They combine the ability of graphical models to compactly model multivariate data with the ability of classification methods to perform prediction using large sets of input features.
3.The input x is divided into feature vectors {x0,x1, . . . ,xT }. Each xs contains various information about the word at position s, such as its identity, orthographic features such as prefixes and suffixes, membership in domain-specific lexicons, and information in semantic databases such as WordNet.
4.CRFs are essentially a way of combining the advantages of discriminative classification and graphical modeling, combining the ability to compactly model multivariate outputs y with the ability to leverage a large number of input features x for prediction.
5.The difference between generative models and CRFs is thus exactly analogous to the difference between the naive Bayes and logistic regression classifiers. Indeed, the multinomial logistic regression model can be seen as the simplest kind of CRF, in which there is only one output variable.
6.The insight of the graphical modeling perspective is that a distribution over very many variables can often be represented as a product of local functions that each depend on a much smaller subset of variables. This factorization turns out to have a close connection to certain conditional independence relationships among the variables — both types of information being easily summarized by a graph. Indeed, this relationship between factorization, conditional independence, and graph structure comprises much of the power of the graphical modeling framework: the conditional independence viewpoint is most useful for designing models, and the factorization viewpoint is most useful for designing inference algorithms.
7.The principal advantage of discriminative modeling is that it is better suited to including rich, overlapping features.
8.In principle, it may not be clear why these approaches should be so different, because we can always convert between the two methods using Bayes rule. For example, in the naive Bayes model, it is easy to convert the joint p(y)p(x|y) into a conditional distribution p(y|x). Indeed, this conditional has the same form as the logistic regression model (2.9). And if we managed to obtain a “true” generative model for the data, that is, a distribution p∗(y,x) = p∗(y)p∗(x|y) from which the data were actually sampled, then we could simply compute the true p∗(y|x), which is exactly the target of the discriminative approach. But it is precisely because we never have the true distribution that the two approaches are different in practice. Estimating p(y)p(x|y) first, and then computing the resulting p(y|x) (the generative approach)yields a different estimate than estimating p(y|x) directly. In other words, generative and discriminative models both have the aim of stimating p(y|x), but they get there in different ways.
an introduction to conditional random fields的更多相关文章
- (转)Image Segmentation with Tensorflow using CNNs and Conditional Random Fields
Daniil's blog Machine Learning and Computer Vision artisan. About/ Blog/ Image Segmentation with Ten ...
- 论文翻译:Conditional Random Fields as Recurrent Neural Networks
Conditional Random Fields as Recurrent Neural Networks ICCV2015 cite237 1摘要: 像素级标注的重要性(语义分割 图像理解) ...
- Conditional Random Fields (CRF) 初理解
1,Conditional Random Fields
- 条件随机场 Conditional Random Fields
简介 假设你有冠西哥一天生活中的照片(这些照片是按时间排好序的),然后你很无聊的想给每张照片打标签(Tag),比如这张是冠西哥在吃饭,那张是冠西哥在睡觉,那么你该怎么做呢? 一种方法是不管这些照片的序 ...
- NLP —— 图模型(二)条件随机场(Conditional random field,CRF)
本文简单整理了以下内容: (一)马尔可夫随机场(Markov random field,无向图模型)简单回顾 (二)条件随机场(Conditional random field,CRF) 这篇写的非常 ...
- 条件随机场(conditional random field,CRF)模型初探
0. 引言 0x1:为什么会有条件随机场?它解决了什么问题? 在开始学习CRF条件随机场之前,我们需要先了解一下这个算法的来龙去脉,它是在什么情况下被提出的,是从哪个算法演进而来的,它又解决了哪些问题 ...
- 条件随机场conditional random field
主要翻译自http://blog.echen.me/2012/01/03/introduction-to-conditional-random-fields/,原作者是MIT的大神,加入了一些我自己的 ...
- 条件随机场Conditional Random Field-CRF入门级理解
条件随机场Conditional Random Field-CRF入门级理解 有向图与无向图模型 CRF模型是一个无向概率图模型,更宽泛地说,它是一个概率图模型.现实世界的一些问题可以用概率图模型 ...
- 马尔可夫随机场(Markov random fields) 概率无向图模型 马尔科夫网(Markov network)
上面两篇博客,解释了概率有向图(贝叶斯网),和用其解释条件独立.本篇将研究马尔可夫随机场(Markov random fields),也叫无向图模型,或称为马尔科夫网(Markov network) ...
随机推荐
- [J2ME] 基本框架框架
import javax.microedition.lcdui.Command; import javax.microedition.lcdui.CommandListener; import jav ...
- Javascript中prototype属性的详解
原文链接:http://www.cnblogs.com/Uncle-Keith/p/5834289.html 在典型的面向对象的语言中,如java,都存在类(class)的概念,类就是对象的模板,对象 ...
- 如何引用jQuery实现下拉列表,点击展开,点击关闭。
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- python mysql desc
#!/usr/bin/python import MySQLdb try: conn=MySQLdb.connect(host='localhost',user='root',passwd='your ...
- JavaScript-分支语句与函数
一.分支语句-if语句 四种if语句: 1.if(判断条件) { 满足条件时需执行的语句 } 2.if(判断条件) { 满足条件时需执行的语句 } else { 不满足条件时需执行的语句 } 3.if ...
- JAVA数组所占内存大小的对比
1.两个数据模型 第一个是基本类型数组,第二个使用的是Float对象数组 public class SummaryModel{ private float[] summaryData; public ...
- 详解Bootstrap表单组件
表单常见的元素主要包括:文本输入框.下拉选择框.单选框.复选框.文本域.按钮等.下面是不同的bootstrap版本: LESS: forms.less SASS: _forms.scss boot ...
- HtmlDocument
HtmlDocument HtmlDocument类对应着一个HTML文档代码.它提供了创建文档,装载文档,修改文档等等一系列功能,来看看它提供的功能. 一.属性 int CheckSum { get ...
- Swift - 计算文本高度
Swift - 计算文本高度 效果 源码 // // String+StringHeight.swift // StringHeight // // Created by YouXianMing on ...
- 制作6寸 kindle pdf
设置word 纸张大小为 90mm*117mm 然后保存为 pdf 就好了.