You can Solve a Geometry Problem too

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 10204    Accepted Submission(s): 5042

Problem Description
Many
geometry(几何)problems were designed in the ACM/ICPC. And now, I also
prepare a geometry problem for this final exam. According to the
experience of many ACMers, geometry problems are always much trouble,
but this problem is very easy, after all we are now attending an exam,
not a contest :)
Give you N (1<=N<=100) segments(线段), please
output the number of all intersections(交点). You should count repeatedly
if M (M>2) segments intersect at the same point.

Note:
You can assume that two segments would not intersect at more than one point.

 
Input
Input
contains multiple test cases. Each test case contains a integer N
(1=N<=100) in a line first, and then N lines follow. Each line
describes one segment with four float values x1, y1, x2, y2 which are
coordinates of the segment’s ending.
A test case starting with 0 terminates the input and this test case is not to be processed.
 
Output
For each case, print the number of intersections, and one line one case.
 
Sample Input
2
0.00 0.00 1.00 1.00
0.00 1.00 1.00 0.00
3
1.00 0.00 1.00 1.00
0.00 1.00 1.00 0.000
0.00 0.00 1.00 0.00
0
 
Sample Output
1
3
 
Author
lcy
判断两个线段有没有交点  百度  叉积
/*
判断AB和CD两线段是否有交点:
同时满足两个条件:('x'表示叉积)
1.C点D点分别在AB的两侧.(向量(ABxAC)*(ABxAD)<=0)
2.A点和B点分别在CD两侧.(向量(CDxCA)*(CDxCB)<=0)
*/
 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
struct node{
double x,y;
}a[],b[];
double chaji(node a,node b,node c){
return (b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y);
}
int judge(node a,node b,node c,node d){
if(max(a.x,b.x)<min(c.x,d.x)||max(c.x,d.x)<min(a.x,b.x))
return ;
if(max(a.y,b.y)<min(c.y,d.y)||min(a.y,b.y)>max(c.y,d.y))
return ;
if(chaji(a,c,d)*chaji(b,c,d)<=&&(chaji(c,a,b)*chaji(d,a,b)<=))
return ;
//if(chaji(c,d,a,b)<=0||chaji(c,d,b,a)<=0)
// return 1;
//if(chaji(d,c,a,b)<=0||chaji(d,c,b,a)<=0)
// return 1;
return ;
}
int main(){
int t;
int i,j;
while(scanf("%d",&t)!=EOF){
if(t==)
break;
for(i=;i<=t;i++){
scanf("%lf%lf%lf%lf",&a[i].x,&a[i].y,&b[i].x,&b[i].y);
}
int ans=;
for(i=;i<=t;i++){
for(j=i+;j<=t;j++){
if(judge(a[i],b[i],a[j],b[j]))
{
ans++;
//cout<<judge(a[i],b[i],a[j],b[j])<<endl;
}
}
}
printf("%d\n",ans);
} }

hdu 1086 You can Solve a Geometry Problem too的更多相关文章

  1. hdu 1086:You can Solve a Geometry Problem too(计算几何,判断两线段相交,水题)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  2. hdu 1086 You can Solve a Geometry Problem too (几何)

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  3. hdu 1086 You can Solve a Geometry Problem too 求n条直线交点的个数

    You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/3 ...

  4. hdu 1086 You can Solve a Geometry Problem too [线段相交]

    题目:给出一些线段,判断有几个交点. 问题:如何判断两条线段是否相交? 向量叉乘(行列式计算):向量a(x1,y1),向量b(x2,y2): 首先我们要明白一个定理:向量a×向量b(×为向量叉乘),若 ...

  5. HDU 1086 You can Solve a Geometry Problem too( 判断线段是否相交 水题 )

    链接:传送门 题意:给出 n 个线段找到交点个数 思路:数据量小,直接暴力判断所有线段是否相交 /*************************************************** ...

  6. Hdoj 1086.You can Solve a Geometry Problem too 题解

    Problem Description Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare ...

  7. 【HDOJ】1086 You can Solve a Geometry Problem too

    数学题,证明AB和CD.只需证明C.D在AB直线两侧,并且A.B在CD直线两侧.公式为:(ABxAC)*(ABxAD)<= 0 and(CDxCA)*(CDxCB)<= 0 #includ ...

  8. HDU 1086:You can Solve a Geometry Problem too

    pid=1086">You can Solve a Geometry Problem too Time Limit: 2000/1000 MS (Java/Others)    Mem ...

  9. You can Solve a Geometry Problem too(线段求交)

    http://acm.hdu.edu.cn/showproblem.php?pid=1086 You can Solve a Geometry Problem too Time Limit: 2000 ...

随机推荐

  1. JAVA设计模式之合成模式

    在阎宏博士的<JAVA与模式>一书中开头是这样描述合成(Composite)模式的: 合成模式属于对象的结构模式,有时又叫做“部分——整体”模式.合成模式将对象组织到树结构中,可以用来描述 ...

  2. ubuntu 12.04 设置代理

    一. Ubuntu 12.04 apt-get 代理设置 由于公司通过代理上网,firefox的代理设置很容易就搞定了,但是通过apt-get安装软件还是不行,于是,查阅了很多资料,最多的方法就是网上 ...

  3. pytion学习1

    个人感觉学习一门新语言,简单的语法懂一点足矣.接下来就是编程.读懂别人程序的每一句,理解每一句的意义. #Filename:MyAddressBook.py import cPickle as p i ...

  4. 使用DotNetOpenAuth搭建OAuth2.0授权框架

    标题还是一如既往的难取. 我认为对于一个普遍问题,必有对应的一个简洁优美的解决方案.当然这也许只是我的一厢情愿,因为根据宇宙法则,所有事物总归趋于混沌,而OAuth协议就是混沌中的产物,不管是1.0. ...

  5. C# 特性详解

    特性(attribute)是被指定给某一声明的一则附加的声明性信息. 在C#中,有一个小的预定义特性集合. using System; public class AnyClass { [Obsolet ...

  6. 一致性hash介绍

    像Memcache以及其它一些内存K/V数据库一样,Redis本身不提供分布式支持,所以在部署多台Redis服务器时,就需要解决如何把数据分散到各个服务器的问题,并且在服务器数量变化时,能做到最大程度 ...

  7. mysql 重复数据防止插入:)

    insert into table (id, name, age) values(1, "A", 19) on duplicate key update name=values(n ...

  8. vc++ basic chapt1

    ______API 和SDK _像c程序可以调用各种函数库一样, windows操作系统提供应用程序编程的接口application programming interface简称API函数. 所以主 ...

  9. afx , afxMessageBox , MessageBox

    afx开头的是全局函数,可以在任何地方使用 MessageBox是CWnd的子函数,只能在CWnd窗口类对象里面用, AfxMessageBox的函数原型 int AfxMessageBox( LPC ...

  10. c#访问Oracle问题及解决方法

    Q:访问oracle 查询条件带汉字结果集为空的问题 A:数据库连接字符串中加入Unicode=true即可. 如 <add key="DbConnectionString" ...