Description

In Absurdistan, there are n towns (numbered 1 through n) and m bidirectional railways. There is also an absurdly simple road network — for each pair of different towns x and y, there is a bidirectional road between towns x and yif and only if there is no railway between them. Travelling to a different town using one railway or one road always takes exactly one hour.

A train and a bus leave town 1 at the same time. They both have the same destination, town n, and don't make any stops on the way (but they can wait in town n). The train can move only along railways and the bus can move only along roads.

You've been asked to plan out routes for the vehicles; each route can use any road/railway multiple times. One of the most important aspects to consider is safety — in order to avoid accidents at railway crossings, the train and the bus must not arrive at the same town (except town n) simultaneously.

Under these constraints, what is the minimum number of hours needed for both vehicles to reach town n (the maximum of arrival times of the bus and the train)? Note, that bus and train are not required to arrive to the town n at the same moment of time, but are allowed to do so.

Input

The first line of the input contains two integers n and m (2 ≤ n ≤ 400, 0 ≤ m ≤ n(n - 1) / 2) — the number of towns and the number of railways respectively.

Each of the next m lines contains two integers u and v, denoting a railway between towns u and v (1 ≤ u, v ≤ nu ≠ v).

You may assume that there is at most one railway connecting any two towns.

Output

Output one integer — the smallest possible time of the later vehicle's arrival in town n. If it's impossible for at least one of the vehicles to reach town n, output  - 1.

Sample Input

Input

4 2
1 3
3 4

Output

2

Input

4 6
1 2
1 3
1 4
2 3
2 4
3 4

Output

-1

Input

5 5
4 2
3 5
4 5
5 1
1 2

Output

3

Hint

In the first sample, the train can take the route  and the bus can take the route . Note that they can arrive at town4 at the same time.

In the second sample, Absurdistan is ruled by railwaymen. There are no roads, so there's no way for the bus to reach town 4.

因为任意一对城市之间都有一条直通的路,要么是铁路要么是公路,因此1到n城市一定有铁路或公路,是铁路,就再去找公路的最短路,否则就找铁路的最短路。

#include<stdio.h>

const int maxn=0x7fff;
long long n,m,s,e,t[][],u[][],dist[];
void dijk(int v0,long long r[][])
{
bool b[];
for(int i=; i<=n; i++)
{
dist[i]=r[v0][i];
b[i]=false;
}
dist[v0] = ;
b[v0] = true;
for(int i=; i<=n; i++)
{
long long mindis=maxn;
int u = v0;
for(int j=; j<=n; j++)
if((!b[j]) && dist[j]<mindis)
{
u = j;
mindis = dist[j];
}
b[u]=true;
for(int j=; j<=n; j++)
if((!b[j]) && r[u][j]<maxn)
if(dist[u] + r[u][j] < dist[j])
dist[j] = dist[u] + r[u][j];
}
}
int main()
{
scanf("%lld%lld",&n,&m);
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
{
t[i][j]=maxn;
u[i][j]=;
}
for(int i=; i<m; i++)
{
scanf("%lld%lld",&s,&e);
t[s][e]=t[e][s]=;
u[s][e]=u[e][s]=maxn;
}
if(u[][n]==)//road直达,铁路的最短路
dijk(,t);
else
dijk(,u);
if(dist[n]>=maxn)
printf("-1\n");
else
printf("%lld\n",dist[n]); return ;
}

  

【CodeForces 602C】H - Approximating a Constant Range(dijk)的更多相关文章

  1. 【linux命令】setterm控制终端属性命令(中英文)

    [linux命令]setterm控制终端属性命令(中英文) 2018年03月23日 17:13:44 阅读数:489 标签: linux 更多 个人分类: linux 摘自:https://blog. ...

  2. 【完全开源】知乎日报UWP版(下篇):商店APP、github源码、功能说明。Windows APP 良心出品。

    目录 说明 功能 截图+视频 关于源码和声明 说明 陆陆续续大概花了一个月的时间,APP算是基本完成了.12月份一直在外出差,在出差期间进行了两次功能完善,然后断断续续修补了一些bug,到目前为止,我 ...

  3. 【Unity3D实战】方块跑酷初级开发实战(一)

    [Unity3D实战]方块跑酷初级开发实战(一) 欢迎大家来到LDS的博客,今天开始我们讲解一下跑酷类游戏的基本操作,本文为原创,视频请观看[ http://www.mkcode.net/html/u ...

  4. 【OCP|052】OCP最新题库解析(052)--小麦苗解答版

    [OCP|052]OCP最新题库解析(052)--小麦苗解答版 OCP最新题库解析历史连接(052):http://mp.weixin.qq.com/s/bUgn4-uciSndji_pUbLZfA ...

  5. 转载 【.NET基础】--委托、事件、线程(2) https://www.cnblogs.com/chengzish/p/4569912.html

    [.NET基础]--委托.事件.线程(2)   本文介绍event的使用以及原理,本文接上一篇文章的Demo继续[下载上一篇Demo] 上一篇我们在类(dg_SayHi.cs)里面定义代理了4个Del ...

  6. 转载 【.NET基础】--委托、事件、线程(1) https://www.cnblogs.com/chengzish/p/4559268.html

    [.NET基础]--委托.事件.线程(1)   1,委托 是存放方法的指针的清单,也就是装方法的容器 A, 新建winform项目[01委托],项目中添加dg_SayHi.cs 委托类 用于存储方法 ...

  7. 【UOJ#51】【UR #4】元旦三侠的游戏(博弈论)

    [UOJ#51][UR #4]元旦三侠的游戏(博弈论) 题面 UOJ 题解 考虑暴力,\(sg[a][b]\)记录\(sg\)函数值,显然可以从\(sg[a+1][b]\)和\(sg[a][b+1]\ ...

  8. 【FICO系列】SAP FI验证故障排除(调试)

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[FICO系列]SAP FI验证故障排除(调试) ...

  9. 【Geek议题】合理的VueSPA架构讨论(下)

    接上篇<[Geek议题]合理的VueSPA架构讨论(上)>传送门. 自动化维护登录状态 登录状态标识符跟token类似,都是需要自动维护有效期,但也有些许不同,获取过程只在用户登录或注册的 ...

随机推荐

  1. ZOJ 3233 Lucky Number --容斥原理

    这题被出题人给活活坑了,题目居然理解错了..哎,不想多说. 题意:给两组数,A组为幸运基数,B组为不幸运的基数,问在[low,high]区间内有多少个数:至少被A组中一个数整除,并且不被B中任意一个数 ...

  2. POJ 3264 Balanced Lineup -- RMQ或线段树

    一段区间的最值问题,用线段树或RMQ皆可.两种代码都贴上:又是空间换时间.. RMQ 解法:(8168KB 1625ms) #include <iostream> #include < ...

  3. WindowXP与WIN7环境安装、破解、配置AppScan8.0

    ---------------------------------------------------------------------------------------------------- ...

  4. [Usaco2010 OPen]Triangle Counting 数三角形

    [Usaco2010 OPen]Triangle Counting 数三角形 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 394  Solved: 1 ...

  5. 学习心得:《十个利用矩阵乘法解决的经典题目》from Matrix67

    本文来自:http://www.matrix67.com/blog/archives/tag/poj大牛的博文学习学习 节选如下部分:矩阵乘法的两个重要性质:一,矩阵乘法不满足交换律:二,矩阵乘法满足 ...

  6. C语言 三级指针的应用

    //三级指针的使用 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <stdlib.h> #includ ...

  7. 一份高级Java招聘要求

    搜了一些招聘,发现自己还有很长的路要走啊,学无止境...... 摘一个典型的招聘要求,如下: 1.5年基于java的项目开发经验,2.熟悉基于 J2EE的相关开源技术以及Spring,Struts2, ...

  8. oracle学习之表空间

    一.oracle当中的dual表 注意:sql语句一定要有一个 : 结尾,不然会报错. Oracle数据库内种特殊表DualDual表Oracle实际存表任何用户均读取用没目标表SelectDual表 ...

  9. Android调用基于.net的WebService

    在实际开发项目中,有时候会为Android开发团队提供一些接口,一般是以asmx文件的方式来承载.而公布出去的数据一般上都是标准的json数据.但是在实际过程中,发现Android团队那边并不是通过将 ...

  10. 网络请求怎么样和UI线程交互? Activity2怎么通知Activity1 更新数据

    1.网络请求怎么样和UI线程交互? 目前我的做法是,建立线程池管理网络请求线程,通过添加task来新增网络请求.所有的网络操作通过统一的request来实现,网络返回结果通过回调onError和onS ...