【CodeForces 602C】H - Approximating a Constant Range(dijk)
Description
In Absurdistan, there are n towns (numbered 1 through n) and m bidirectional railways. There is also an absurdly simple road network — for each pair of different towns x and y, there is a bidirectional road between towns x and yif and only if there is no railway between them. Travelling to a different town using one railway or one road always takes exactly one hour.
A train and a bus leave town 1 at the same time. They both have the same destination, town n, and don't make any stops on the way (but they can wait in town n). The train can move only along railways and the bus can move only along roads.
You've been asked to plan out routes for the vehicles; each route can use any road/railway multiple times. One of the most important aspects to consider is safety — in order to avoid accidents at railway crossings, the train and the bus must not arrive at the same town (except town n) simultaneously.
Under these constraints, what is the minimum number of hours needed for both vehicles to reach town n (the maximum of arrival times of the bus and the train)? Note, that bus and train are not required to arrive to the town n at the same moment of time, but are allowed to do so.
Input
The first line of the input contains two integers n and m (2 ≤ n ≤ 400, 0 ≤ m ≤ n(n - 1) / 2) — the number of towns and the number of railways respectively.
Each of the next m lines contains two integers u and v, denoting a railway between towns u and v (1 ≤ u, v ≤ n, u ≠ v).
You may assume that there is at most one railway connecting any two towns.
Output
Output one integer — the smallest possible time of the later vehicle's arrival in town n. If it's impossible for at least one of the vehicles to reach town n, output - 1.
Sample Input
4 2
1 3
3 4
2
4 6
1 2
1 3
1 4
2 3
2 4
3 4
-1
5 5
4 2
3 5
4 5
5 1
1 2
3
Hint
In the first sample, the train can take the route and the bus can take the route
. Note that they can arrive at town4 at the same time.
In the second sample, Absurdistan is ruled by railwaymen. There are no roads, so there's no way for the bus to reach town 4.
因为任意一对城市之间都有一条直通的路,要么是铁路要么是公路,因此1到n城市一定有铁路或公路,是铁路,就再去找公路的最短路,否则就找铁路的最短路。
#include<stdio.h> const int maxn=0x7fff;
long long n,m,s,e,t[][],u[][],dist[];
void dijk(int v0,long long r[][])
{
bool b[];
for(int i=; i<=n; i++)
{
dist[i]=r[v0][i];
b[i]=false;
}
dist[v0] = ;
b[v0] = true;
for(int i=; i<=n; i++)
{
long long mindis=maxn;
int u = v0;
for(int j=; j<=n; j++)
if((!b[j]) && dist[j]<mindis)
{
u = j;
mindis = dist[j];
}
b[u]=true;
for(int j=; j<=n; j++)
if((!b[j]) && r[u][j]<maxn)
if(dist[u] + r[u][j] < dist[j])
dist[j] = dist[u] + r[u][j];
}
}
int main()
{
scanf("%lld%lld",&n,&m);
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
{
t[i][j]=maxn;
u[i][j]=;
}
for(int i=; i<m; i++)
{
scanf("%lld%lld",&s,&e);
t[s][e]=t[e][s]=;
u[s][e]=u[e][s]=maxn;
}
if(u[][n]==)//road直达,铁路的最短路
dijk(,t);
else
dijk(,u);
if(dist[n]>=maxn)
printf("-1\n");
else
printf("%lld\n",dist[n]); return ;
}
【CodeForces 602C】H - Approximating a Constant Range(dijk)的更多相关文章
- 【linux命令】setterm控制终端属性命令(中英文)
[linux命令]setterm控制终端属性命令(中英文) 2018年03月23日 17:13:44 阅读数:489 标签: linux 更多 个人分类: linux 摘自:https://blog. ...
- 【完全开源】知乎日报UWP版(下篇):商店APP、github源码、功能说明。Windows APP 良心出品。
目录 说明 功能 截图+视频 关于源码和声明 说明 陆陆续续大概花了一个月的时间,APP算是基本完成了.12月份一直在外出差,在出差期间进行了两次功能完善,然后断断续续修补了一些bug,到目前为止,我 ...
- 【Unity3D实战】方块跑酷初级开发实战(一)
[Unity3D实战]方块跑酷初级开发实战(一) 欢迎大家来到LDS的博客,今天开始我们讲解一下跑酷类游戏的基本操作,本文为原创,视频请观看[ http://www.mkcode.net/html/u ...
- 【OCP|052】OCP最新题库解析(052)--小麦苗解答版
[OCP|052]OCP最新题库解析(052)--小麦苗解答版 OCP最新题库解析历史连接(052):http://mp.weixin.qq.com/s/bUgn4-uciSndji_pUbLZfA ...
- 转载 【.NET基础】--委托、事件、线程(2) https://www.cnblogs.com/chengzish/p/4569912.html
[.NET基础]--委托.事件.线程(2) 本文介绍event的使用以及原理,本文接上一篇文章的Demo继续[下载上一篇Demo] 上一篇我们在类(dg_SayHi.cs)里面定义代理了4个Del ...
- 转载 【.NET基础】--委托、事件、线程(1) https://www.cnblogs.com/chengzish/p/4559268.html
[.NET基础]--委托.事件.线程(1) 1,委托 是存放方法的指针的清单,也就是装方法的容器 A, 新建winform项目[01委托],项目中添加dg_SayHi.cs 委托类 用于存储方法 ...
- 【UOJ#51】【UR #4】元旦三侠的游戏(博弈论)
[UOJ#51][UR #4]元旦三侠的游戏(博弈论) 题面 UOJ 题解 考虑暴力,\(sg[a][b]\)记录\(sg\)函数值,显然可以从\(sg[a+1][b]\)和\(sg[a][b+1]\ ...
- 【FICO系列】SAP FI验证故障排除(调试)
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[FICO系列]SAP FI验证故障排除(调试) ...
- 【Geek议题】合理的VueSPA架构讨论(下)
接上篇<[Geek议题]合理的VueSPA架构讨论(上)>传送门. 自动化维护登录状态 登录状态标识符跟token类似,都是需要自动维护有效期,但也有些许不同,获取过程只在用户登录或注册的 ...
随机推荐
- Codeforces Round 261 Div.2 D Pashmak and Parmida's problem --树状数组
题意:给出数组A,定义f(l,r,x)为A[]的下标l到r之间,等于x的元素数.i和j符合f(1,i,a[i])>f(j,n,a[j]),求有多少对这样的(i,j). 解法:分别从左到右,由右到 ...
- Cursor的各种效果
总结之后的Cursor的各种效果: http://sandbox.runjs.cn/show/bbwoyn0c http://css-cursor.techstream.org/ 源代码如下: < ...
- 第一章 初识MVC4
1.MVC模式 Mvc将应用程序分离为三个部分: Model:是一组类,用来描述被处理的数据,同时也定义这些数据如何被变更和操作的业务规则.与数据访问层非常类似. View:是一种动态生成HTML的模 ...
- [1]Telerik Extensions for ASP.NET MVC 中文教程(转)
http://demos.telerik.com/aspnet-mvc/ Telerik Extensions for ASP.NET MVC 是Telerik 公司专门针对Asp.net MVC 开 ...
- Linux内核
Linux内核配置.编译及Makefile简述 Hi,大家好!我是CrazyCatJack.最近在学习Linux内核的配置.编译及Makefile文件.今天总结一下学习成果,分享给大家^_^ 1.解压 ...
- LINQ to Entities 查询语法
转自: http://www.cnblogs.com/asingna/archive/2013/01/28/2879595.html 实体框架(Entity Framework )是 ADO.NET ...
- 自定义GrildView实现单选功能
首先看实现功能截图,这是一个自定义Dialog,并且里面内容由GrildView 绑定数据源,实现类似单选功能. 首先自定义Dialog,绑定数据源 自定义Dialog弹出框大小方法 最主要实现的就是 ...
- 软件工程(QLGY2015)第二次作业点评(随机挑选20组点评)
相关博文目录: 第一次作业点评 第二次作业点评 第三次作业点评 说明:随机挑选20组点评,大家可以看看blog名字,github项目名字,看看那种是更好的,可以学习,每个小组都会反应出一些问题,希望能 ...
- warning: LF will be replaced by CRLF
一. Git提供了一个换行符检查功能(core.safecrlf),可以在提交时检查文件是否混用了不同风格的换行符.这个功能的选项如下: false - 不做任何检查warn - 在提交时检查并警告t ...
- 分享:大晚上用自己的锤子手机跨系统刷MIUI,跌宕起伏啊!!
序言: 写这篇博客之前问了一下博客园官方,能不能写关于刷机这一方面的,官方还是比较通情达理的,说技术类没有限制的,那样我就放心的写了.今天早上在博客园中稍微逛了一下,感觉似乎很少有关于刷机这一方面的, ...