这是搭建hadoop环境后的第一个MapReduce程序;

  基于hadoop streaming的python的脚本;

  1 map.py文件,把文本的内容划分成单词:

#!/usr/bin/pythonimport sys

for line in sys.stdin:    line = line.strip()    words = line.split()    for word in words:        print('%s\t%s' % (word, 1))

  

  2 reduce文件,把统计单词出现的次数;

#!/usr/bin/pythonimport sys

last_key = Nonerunning_total = 0

for input_line in sys.stdin:    input_line = input_line.strip()    this_key, value = input_line.split("\t", 1)    value = int(value)

    if last_key == this_key:        running_total += value    else:        if last_key:            print ("%s\t%d" % (last_key, running_total))        running_total = value        last_key = this_keyif last_key == this_key:    print( "%s\t%d" % (last_key, running_total) )
        

  

  3 本地测试下python脚本,结果是否正确:

cat in.txt | python map.py | python reduce.py

  4 Hadoop调用脚本:指定输出目录OUTPUT;

  调用支持多语言的streaming的编程环境,参数-input是输入的log文件,为了用mapreduce模式统计这个文件每个单词出现的次数;-output是输出路径;-mapper是mapper编译 此处是python语言;-reducer是reduce编译语法;-file是mapper文件路径和reduce文件路径;-numReduceTaskers 是使用的子tasker数目,这里是3,代表分成了3了tasker分布式的处理计数任务;

#!/bin/bash

OUTPUT=/home/apm3/outdir
hadoop fs -rmr $OUTPUT
hadoop jar /usr/local/hadoop/share/hadoop/tools/lib/hadoop-streaming-.jar \
-input /opt/mapr/logs/warden.log \
-output $OUTPUT \
-mapper "python map.py" \
-reducer "python reduce.py" \
-file map.py \
-file reduce.py \
-numReduceTasks
 

  bash -x start.sh 会在输出路径中生成三个输出文件,及三分ReduceTasks 输出的结果;(MapReduce 模式主要做了shuffle和sort任务,shuffle是按照hashkey分配单词到子tasker中,而sort是排序的功能。)

  5 MapR里执行程序,run.sh:

hadoop fs -rm -r /user/rongyu/output

hadoop jar hadoop-streaming-2.7.0-mapr-1602.jar \-input "/user/input/*" \-output "/user/rongyu/output" \-file "/home/mapr/Develop/rongyu/mapreduce/map.py"-mapper "python map.py" \-file "/home/mapr/Develop/rongyu/mapreduce/reduce.py"-reducer "python reduce.py" \-numReduceTasks 3

  6 查看结果

  查看输出目录: 命令 $ hadoop fs -ls /user/rongyu/output/

Found  items
-rwxr-xr-x    mapr mapr           -- : /user/rongyu/output/_SUCCESS
-rwxr-xr-x    mapr mapr     -- : /user/rongyu/output/part-
-rwxr-xr-x    mapr mapr     -- : /user/rongyu/output/part-
-rwxr-xr-x    mapr mapr     -- : /user/rongyu/output/part-

  输出三个输出文件之一part-00000:命令 $ hadoop fs -cat /user/rongyu/output/part-00000 | less

/nodes/apm1/services/nfs        17/opt/mapr/conf/cldb.conf        12/opt/mapr/hostid        6/services/cldb/master.  4/services/fileserver.   2/services/fileserver/master     1/services/hbmaster/apm2.        1/services/hbregionserver/apm4.  207/services/hbregionserver/master 1/services/historyserver/master  1/services/hoststats/apm2.       2/services/kvstore/apm3. 2/services/nfs.  22/services/nfs/master.   53/services_config/kvstore.       2/services_config/nodemanager.   3/services_config/nodemanager/apm4.      2600:00:00,3402   100:00:00,4710   100:00:01,6710   100:00:01,7916   100:00:01,9725   1

  7异常:

// :: INFO mapreduce.Job: Task Id : attempt_1469682745105_0016_m_000001_2, Status : FAILED
Error: java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code
    at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:)
    at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:)
    at org.apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:)
    at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:)
    at org.apache.hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:)
    at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:)
    at org.apache.hadoop.mapred.MapTask.run(MapTask.java:)
    at org.apache.hadoop.mapred.YarnChild$.run(YarnChild.java:)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:)
    at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:)

  解决方案:在python脚本头部增加 #!/usr/bin/python  并且注意run.sh的-reducer -mapper等参数设置

  代码下载: https://github.com/rongyux/Hadoop_WordCount

Hadoop实战2:MapReduce编程-WordCount实例-streaming-python环境的更多相关文章

  1. Hadoop实战3:MapReduce编程-WordCount统计单词个数-eclipse-java-ubuntu环境

    之前习惯用hadoop streaming环境编写python程序,下面总结编辑java的eclipse环境配置总结,及一个WordCount例子运行. 一 下载eclipse安装包及hadoop插件 ...

  2. Hadoop实战5:MapReduce编程-WordCount统计单词个数-eclipse-java-windows环境

    Hadoop研发在java环境的拓展 一 背景 由于一直使用hadoop streaming形式编写mapreduce程序,所以目前的hadoop程序局限于python语言.下面为了拓展java语言研 ...

  3. MapReduce编程入门实例之WordCount:分别在Eclipse和Hadoop集群上运行

    上一篇博文如何在Eclipse下搭建Hadoop开发环境,今天给大家介绍一下如何分别分别在Eclipse和Hadoop集群上运行我们的MapReduce程序! 1. 在Eclipse环境下运行MapR ...

  4. 【Big Data - Hadoop - MapReduce】初学Hadoop之图解MapReduce与WordCount示例分析

    Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算. HDFS是Google File System(GFS) ...

  5. 初学Hadoop之图解MapReduce与WordCount示例分析

    Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算. HDFS是Google File System(GFS) ...

  6. Hadoop实战训练————MapReduce实现PageRank算法

    经过一段时间的学习,对于Hadoop有了一些了解,于是决定用MapReduce实现PageRank算法,以下简称PR 先简单介绍一下PR算法(摘自百度百科:https://baike.baidu.co ...

  7. Python实现MapReduce,wordcount实例,MapReduce实现两表的Join

    Python实现MapReduce 下面使用mapreduce模式实现了一个简单的统计日志中单词出现次数的程序: from functools import reduce from multiproc ...

  8. hadoop之mapreduce编程实例(系统日志初步清洗过滤处理)

    刚刚开始接触hadoop的时候,总觉得必须要先安装hadoop集群才能开始学习MR编程,其实并不用这样,当然如果你有条件有机器那最好是自己安装配置一个hadoop集群,这样你会更容易理解其工作原理.我 ...

  9. Hadoop MapReduce编程 API入门系列之wordcount版本1(五)

    这个很简单哈,编程的版本很多种. 代码版本1 package zhouls.bigdata.myMapReduce.wordcount5; import java.io.IOException; im ...

随机推荐

  1. PySe-003-Se-WebDriver 启动浏览器之一 - Firefox

    此文主要演示 MacOX 下 WebDriver 启动 Firefox 浏览器,因 WebDriver 对 Firefox 浏览器是原生支持的,因而无需像启动其他浏览器一样需要相对应的 driver. ...

  2. C#中jQuery Ajax实例(二)

    上一篇写了一个简单的Ajax异步程序,这一次同样是简单的程序,只不过这次先把参数传到一般处理程序(后缀为ashx)中,再把结果传回到页面. 1.html代码: <html xmlns=" ...

  3. .NET基础加强,找工作之前可以看看这些............

    .NET基础知识加强: 1  变量命名规则:骆驼命名法:第一个字母小写之后的首字母大写,[对于方法名和类名首字母大写]→培养良好的命名规范. 2  构造函数:没有返回值,方法名和类名相同,每个类中都有 ...

  4. MySQL一些常用的时间函数

    https://my.oschina.net/sallency/blog/470370

  5. JQuery: JQuery效果(隐藏、显示、切换,滑动,淡入淡出,以及动画)

    JQuery:效果 JQuery效果有很多,包括隐藏.显示.切换,滑动,淡入淡出,以及动画等.隐藏:JQuery hide() 显示:JQuery show() 切换:JQuery toggle() ...

  6. Android Mina框架的学习笔记

    Apache MINA(Multipurpose Infrastructure for Network Applications) 是 Apache 组织一个较新的项目,它为开发高性能和高可用性的网络 ...

  7. 动词 or 名词 :这是一个问题 【转载】

    前言:有网友让我用通俗的语言来讲一讲RESTful ,   我在这一块工程实践的不太多,有点为难了,  只能讲一讲我的理解, 欢迎大家批评指正.计算机行业最擅长造新词了,像什么AJAX,IoC, AO ...

  8. ucenter 客户端里的自动方法

    <?php /** * UCenter 应用程序开发 Example * * UCenter 简易应用程序,应用程序有自己的用户表 * 使用到的接口函数: * uc_authcode() 可选, ...

  9. Linux环境命令大全

    java环境比较常用的几个命令: cd /  切换目录, cd ../切换到上级目录 rm -rf 文件名 删除文件 jar -xvf 文件名  解压文件 mv 文件 新路径  将当前路径下面的文件移 ...

  10. 为何C语言(的函数调用)需要堆栈,而汇编语言不需要

    转自:Uboot中start.S源码中指令级的详尽解析 green-waste为何 C 语言(的函数调用)需要堆栈,而汇编语言却需要堆栈之前看了很多关亍uboot的分析,其中就有说要为C语言的运行,准 ...