这是搭建hadoop环境后的第一个MapReduce程序;

  基于hadoop streaming的python的脚本;

  1 map.py文件,把文本的内容划分成单词:

#!/usr/bin/pythonimport sys

for line in sys.stdin:    line = line.strip()    words = line.split()    for word in words:        print('%s\t%s' % (word, 1))

  

  2 reduce文件,把统计单词出现的次数;

#!/usr/bin/pythonimport sys

last_key = Nonerunning_total = 0

for input_line in sys.stdin:    input_line = input_line.strip()    this_key, value = input_line.split("\t", 1)    value = int(value)

    if last_key == this_key:        running_total += value    else:        if last_key:            print ("%s\t%d" % (last_key, running_total))        running_total = value        last_key = this_keyif last_key == this_key:    print( "%s\t%d" % (last_key, running_total) )
        

  

  3 本地测试下python脚本,结果是否正确:

cat in.txt | python map.py | python reduce.py

  4 Hadoop调用脚本:指定输出目录OUTPUT;

  调用支持多语言的streaming的编程环境,参数-input是输入的log文件,为了用mapreduce模式统计这个文件每个单词出现的次数;-output是输出路径;-mapper是mapper编译 此处是python语言;-reducer是reduce编译语法;-file是mapper文件路径和reduce文件路径;-numReduceTaskers 是使用的子tasker数目,这里是3,代表分成了3了tasker分布式的处理计数任务;

#!/bin/bash

OUTPUT=/home/apm3/outdir
hadoop fs -rmr $OUTPUT
hadoop jar /usr/local/hadoop/share/hadoop/tools/lib/hadoop-streaming-.jar \
-input /opt/mapr/logs/warden.log \
-output $OUTPUT \
-mapper "python map.py" \
-reducer "python reduce.py" \
-file map.py \
-file reduce.py \
-numReduceTasks
 

  bash -x start.sh 会在输出路径中生成三个输出文件,及三分ReduceTasks 输出的结果;(MapReduce 模式主要做了shuffle和sort任务,shuffle是按照hashkey分配单词到子tasker中,而sort是排序的功能。)

  5 MapR里执行程序,run.sh:

hadoop fs -rm -r /user/rongyu/output

hadoop jar hadoop-streaming-2.7.0-mapr-1602.jar \-input "/user/input/*" \-output "/user/rongyu/output" \-file "/home/mapr/Develop/rongyu/mapreduce/map.py"-mapper "python map.py" \-file "/home/mapr/Develop/rongyu/mapreduce/reduce.py"-reducer "python reduce.py" \-numReduceTasks 3

  6 查看结果

  查看输出目录: 命令 $ hadoop fs -ls /user/rongyu/output/

Found  items
-rwxr-xr-x    mapr mapr           -- : /user/rongyu/output/_SUCCESS
-rwxr-xr-x    mapr mapr     -- : /user/rongyu/output/part-
-rwxr-xr-x    mapr mapr     -- : /user/rongyu/output/part-
-rwxr-xr-x    mapr mapr     -- : /user/rongyu/output/part-

  输出三个输出文件之一part-00000:命令 $ hadoop fs -cat /user/rongyu/output/part-00000 | less

/nodes/apm1/services/nfs        17/opt/mapr/conf/cldb.conf        12/opt/mapr/hostid        6/services/cldb/master.  4/services/fileserver.   2/services/fileserver/master     1/services/hbmaster/apm2.        1/services/hbregionserver/apm4.  207/services/hbregionserver/master 1/services/historyserver/master  1/services/hoststats/apm2.       2/services/kvstore/apm3. 2/services/nfs.  22/services/nfs/master.   53/services_config/kvstore.       2/services_config/nodemanager.   3/services_config/nodemanager/apm4.      2600:00:00,3402   100:00:00,4710   100:00:01,6710   100:00:01,7916   100:00:01,9725   1

  7异常:

// :: INFO mapreduce.Job: Task Id : attempt_1469682745105_0016_m_000001_2, Status : FAILED
Error: java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code
    at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:)
    at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:)
    at org.apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:)
    at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:)
    at org.apache.hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:)
    at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:)
    at org.apache.hadoop.mapred.MapTask.run(MapTask.java:)
    at org.apache.hadoop.mapred.YarnChild$.run(YarnChild.java:)
    at java.security.AccessController.doPrivileged(Native Method)
    at javax.security.auth.Subject.doAs(Subject.java:)
    at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:)
    at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:)

  解决方案:在python脚本头部增加 #!/usr/bin/python  并且注意run.sh的-reducer -mapper等参数设置

  代码下载: https://github.com/rongyux/Hadoop_WordCount

Hadoop实战2:MapReduce编程-WordCount实例-streaming-python环境的更多相关文章

  1. Hadoop实战3:MapReduce编程-WordCount统计单词个数-eclipse-java-ubuntu环境

    之前习惯用hadoop streaming环境编写python程序,下面总结编辑java的eclipse环境配置总结,及一个WordCount例子运行. 一 下载eclipse安装包及hadoop插件 ...

  2. Hadoop实战5:MapReduce编程-WordCount统计单词个数-eclipse-java-windows环境

    Hadoop研发在java环境的拓展 一 背景 由于一直使用hadoop streaming形式编写mapreduce程序,所以目前的hadoop程序局限于python语言.下面为了拓展java语言研 ...

  3. MapReduce编程入门实例之WordCount:分别在Eclipse和Hadoop集群上运行

    上一篇博文如何在Eclipse下搭建Hadoop开发环境,今天给大家介绍一下如何分别分别在Eclipse和Hadoop集群上运行我们的MapReduce程序! 1. 在Eclipse环境下运行MapR ...

  4. 【Big Data - Hadoop - MapReduce】初学Hadoop之图解MapReduce与WordCount示例分析

    Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算. HDFS是Google File System(GFS) ...

  5. 初学Hadoop之图解MapReduce与WordCount示例分析

    Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,MapReduce则为海量的数据提供了计算. HDFS是Google File System(GFS) ...

  6. Hadoop实战训练————MapReduce实现PageRank算法

    经过一段时间的学习,对于Hadoop有了一些了解,于是决定用MapReduce实现PageRank算法,以下简称PR 先简单介绍一下PR算法(摘自百度百科:https://baike.baidu.co ...

  7. Python实现MapReduce,wordcount实例,MapReduce实现两表的Join

    Python实现MapReduce 下面使用mapreduce模式实现了一个简单的统计日志中单词出现次数的程序: from functools import reduce from multiproc ...

  8. hadoop之mapreduce编程实例(系统日志初步清洗过滤处理)

    刚刚开始接触hadoop的时候,总觉得必须要先安装hadoop集群才能开始学习MR编程,其实并不用这样,当然如果你有条件有机器那最好是自己安装配置一个hadoop集群,这样你会更容易理解其工作原理.我 ...

  9. Hadoop MapReduce编程 API入门系列之wordcount版本1(五)

    这个很简单哈,编程的版本很多种. 代码版本1 package zhouls.bigdata.myMapReduce.wordcount5; import java.io.IOException; im ...

随机推荐

  1. 【Android Studio快捷键】之导入相应包声明(import packages)

    可能import 单个声明的快捷键大家都很容易找到,Alt+Enter.但是如果我要一次性import文件中所有的声明,这个快捷键是什么呢,找啊找的,就是没找到,以前在Eclipse是Ctrl+1,但 ...

  2. 【转】Http Cache最基本的一些东西

    Http Cache最基本的一些东西 Cache浏览器IEwebkitApache  Http的Cache机制总共有4个组成部分: Cache-Control: max-age=N(seconds)  ...

  3. 1.后台如何获取 jquery get方式的ajax的参数

    1. update.jsp 1.2 默认是dataType是json getJSON: function( url, data, callback ) { return jQuery.get(url, ...

  4. Android Service Intent must be explicit的解决方法

    今天在学习Android的Service组件的时候,在AndroidMainfest.xml中定义了 <service android:name=".BindService" ...

  5. LED_9261在linux2.6.30中tick_led的实现

    在linux2.6.30内核中,内核也提供了相关的平台驱动来操作gpio或LED,但更简便的方法是直接操作GPIO来控制led. 网上一博文中介绍直接封装led_on和led_off()函数直接调用即 ...

  6. 解决:CWnd::SetWindowText报Assertion failure

    参考资料: http://www.cnblogs.com/tiancun/p/3756581.html http://www.tc5u.com/mfc/2120698.htm http://forum ...

  7. linux namespace note

    --------------------------------- from http://oldwiki.linux-vserver.org/Namespaces //开源不只是代码,还有思想 Na ...

  8. Java基础之写文件——使用带缓冲的Writer写文件(WriterOutputToFile)

    控制台程序,将一列字符串写入到文件中. import java.io.*; import java.nio.file.*; import java.nio.charset.Charset; publi ...

  9. 线段树 Interval Tree

    一.线段树 线段树既是线段也是树,并且是一棵二叉树,每个结点是一条线段,每条线段的左右儿子线段分别是该线段的左半和右半区间,递归定义之后就是一棵线段树. 例题:给定N条线段,{[2, 5], [4, ...

  10. "淘宝推荐系统简介"分享总结

    概述: 此分享是关于淘宝推荐系统简介 1.推荐引擎就是:如何找到用户感兴趣的东西和以什么形式告诉用户:2.推荐引擎的作用:提高用户忠诚度,提高成交转化率和提高网站交叉销售能力:3.推荐系统核心:产品, ...