Hadoop2.4.x 实例测试 WordCount程序
在实例测试前先确保hadoop 启动正确
Master.Hadoop:
word 1
[hadoop@Master input]$ jps
6736 Jps
6036 NameNode
4697 SecondaryNameNode
4849 ResourceManager
[hadoop@Master input]$
Slave1.Hadoop
[hadoop@Slave1 sources]$ jps
8086 SecondaryNameNode
8961 Jps
8320 NodeManager
7935 DataNode
在测试过程中遇到的错与与解决方案:
ls: Call From Master.Hadoop/192.168.160.131 to Master.Hadoop:9000 failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused
[hadoop@Master input]$ hadoop fs -put ./ /input
15/06/30 17:10:45 WARN hdfs.DFSClient: DataStreamer Exception
org.apache.hadoop.ipc.RemoteException(java.io.IOException): File /input/input/test1.txt._COPYING_ could only be replicated to 0 nodes instead of minReplication (=1). There are 0 datanode(s) running and no node(s) are excluded in this operation.
at org.apache.hadoop.hdfs.server.blockmanagement.BlockManager.chooseTarget(BlockManager.java:1441)
解决方案:
1. 先执行stop-all.sh暂停所有服务
2. 将所有Salve节点上的tmp , logs 文件夹删除 , 然后重新建立tmp , logs 文件夹
3. 格式化HDFS文件系统:hadoop namenode -format
转载地址:
http://linux.it.net.cn/e/cluster/hadoop/2014/1215/10427.html
转载内容:
装好的hadoop测试一1个示例程序WordCount,首先需要在操作系统上新建两个任意文件,然后上传到hadoop,再运行该程序统计文件中单词的个数,最后查看结果。
在操作系统上新建任意文件:
例如:
[hadoop@hadoop01 input]$ ls
test1.txt test2.txt
查看hadoop的文件系统目录
[hadoop@hadoop01 input]$ hadoop fs -ls /
Found 1 items
drwxr-xr-x - hadoop supergroup 0 2013-10-30 00:00 /input
上传至hadoop的/input下
[hadoop@hadoop01 input]$ hadoop fs -put ./ /input
[hadoop@hadoop01 input]$ hadoop fs -ls /input
Found 2 items
-rw-r--r-- 3 hadoop supergroup 12 2013-10-30 00:00 /input/test1.txt
-rw-r--r-- 3 hadoop supergroup 13 2013-10-30 00:00 /input/test2.txt
在hadoop文件系统命令查看这两个文件的内容:
[hadoop@hadoop01 test]$ hadoop fs -cat /input/test1.txt
hello world
[hadoop@hadoop01 test]$ hadoop fs -cat /input/test2.txt
hello hadoop
运行示例程序(WordCount):
[hadoop@hadoop01 test]$ hadoop jar $HADOOP_HOME/share/hadoop/mapreduce/sources/hadoop-mapreduce-examples-2.2.0-sources.jar org.apache.hadoop.examples.WordCount /input /output
13/11/06 21:33:40 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id
13/11/06 21:33:40 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=
13/11/06 21:33:40 INFO input.FileInputFormat: Total input paths to process : 2
13/11/06 21:33:41 INFO mapreduce.JobSubmitter: number of splits:2
13/11/06 21:33:41 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
13/11/06 21:33:41 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
13/11/06 21:33:41 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class IT网,http://www.it.net.cn
13/11/06 21:33:41 INFO Configuration.deprecation: mapreduce.combine.class is deprecated. Instead, use mapreduce.job.combine.class
13/11/06 21:33:41 INFO Configuration.deprecation: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
13/11/06 21:33:41 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
13/11/06 21:33:41 INFO Configuration.deprecation: mapreduce.reduce.class is deprecated. Instead, use mapreduce.job.reduce.class
13/11/06 21:33:41 INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
13/11/06 21:33:41 INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
13/11/06 21:33:41 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
13/11/06 21:33:41 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
13/11/06 21:33:41 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
13/11/06 21:33:41 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local382050821_0001
13/11/06 21:33:41 WARN conf.Configuration: file:/hadoop/hdfs/tmp/hadoop-hadoop/mapred/staging/hadoop382050821/.staging/job_local382050821_0001/job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval; Ignoring.
13/11/06 21:33:41 WARN conf.Configuration: file:/hadoop/hdfs/tmp/hadoop-hadoop/mapred/staging/hadoop382050821/.staging/job_local382050821_0001/job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts; Ignoring.
13/11/06 21:33:42 WARN conf.Configuration: file:/hadoop/hdfs/tmp/hadoop-hadoop/mapred/local/localRunner/hadoop/job_local382050821_0001/job_local382050821_0001.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval; Ignoring. Linux学习,http:// linux.it.net.cn
13/11/06 21:33:42 WARN conf.Configuration: file:/hadoop/hdfs/tmp/hadoop-hadoop/mapred/local/localRunner/hadoop/job_local382050821_0001/job_local382050821_0001.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts; Ignoring.
13/11/06 21:33:42 INFO mapreduce.Job: The url to track the job: http://localhost:8080/
13/11/06 21:33:42 INFO mapreduce.Job: Running job: job_local382050821_0001
13/11/06 21:33:42 INFO mapred.LocalJobRunner: OutputCommitter set in config null
13/11/06 21:33:42 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter
13/11/06 21:33:42 INFO mapred.LocalJobRunner: Waiting for map tasks
13/11/06 21:33:42 INFO mapred.LocalJobRunner: Starting task: attempt_local382050821_0001_m_000000_0
13/11/06 21:33:42 INFO mapred.Task: Using ResourceCalculatorProcessTree : [ ]
13/11/06 21:33:42 INFO mapred.MapTask: Processing split: hdfs://hadoop01:9000/input/test2.txt:0+13 Linux学习,http:// linux.it.net.cn
13/11/06 21:33:42 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
13/11/06 21:33:42 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
13/11/06 21:33:42 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
13/11/06 21:33:42 INFO mapred.MapTask: soft limit at 83886080
13/11/06 21:33:42 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
13/11/06 21:33:42 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
13/11/06 21:33:43 INFO mapred.LocalJobRunner:
13/11/06 21:33:43 INFO mapred.MapTask: Starting flush of map output
13/11/06 21:33:43 INFO mapred.MapTask: Spilling map output
13/11/06 21:33:43 INFO mapred.MapTask: bufstart = 0; bufend = 21; bufvoid = 104857600
13/11/06 21:33:43 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214392(104857568); length = 5/6553600
13/11/06 21:33:43 INFO mapred.MapTask: Finished spill 0
13/11/06 21:33:43 INFO mapred.Task: Task:attempt_local382050821_0001_m_000000_0 is done. And is in the process of committing
13/11/06 21:33:43 INFO mapreduce.Job: Job job_local382050821_0001 running in uber mode : false
13/11/06 21:33:43 INFO mapreduce.Job: map 0% reduce 0%
13/11/06 21:33:43 INFO mapred.LocalJobRunner: map
13/11/06 21:33:43 INFO mapred.Task: Task 'attempt_local382050821_0001_m_000000_0' done.
13/11/06 21:33:43 INFO mapred.LocalJobRunner: Finishing task: attempt_local382050821_0001_m_000000_0
13/11/06 21:33:43 INFO mapred.LocalJobRunner: Starting task: attempt_local382050821_0001_m_000001_0
13/11/06 21:33:43 INFO mapred.Task: Using ResourceCalculatorProcessTree : [ ]
13/11/06 21:33:43 INFO mapred.MapTask: Processing split: hdfs://hadoop01:9000/input/test1.txt:0+12
13/11/06 21:33:43 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer
13/11/06 21:33:43 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584)
13/11/06 21:33:43 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100
13/11/06 21:33:43 INFO mapred.MapTask: soft limit at 83886080
13/11/06 21:33:43 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600
13/11/06 21:33:43 INFO mapred.MapTask: kvstart = 26214396; length = 6553600
13/11/06 21:33:43 INFO mapred.LocalJobRunner:
13/11/06 21:33:43 INFO mapred.MapTask: Starting flush of map output
13/11/06 21:33:43 INFO mapred.MapTask: Spilling map output
13/11/06 21:33:43 INFO mapred.MapTask: bufstart = 0; bufend = 20; bufvoid = 104857600
13/11/06 21:33:43 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214392(104857568); length = 5/6553600
13/11/06 21:33:43 INFO mapred.MapTask: Finished spill 0
13/11/06 21:33:43 INFO mapred.Task: Task:attempt_local382050821_0001_m_000001_0 is done. And is in the process of committing
13/11/06 21:33:43 INFO mapred.LocalJobRunner: map
13/11/06 21:33:43 INFO mapred.Task: Task 'attempt_local382050821_0001_m_000001_0' done.
13/11/06 21:33:43 INFO mapred.LocalJobRunner: Finishing task: attempt_local382050821_0001_m_000001_0
13/11/06 21:33:43 INFO mapred.LocalJobRunner: Map task executor complete.
13/11/06 21:33:43 INFO mapred.Task: Using ResourceCalculatorProcessTree : [ ]
13/11/06 21:33:43 INFO mapred.Merger: Merging 2 sorted segments
13/11/06 21:33:43 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 36 bytes
13/11/06 21:33:43 INFO mapred.LocalJobRunner:
13/11/06 21:33:43 INFO Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords
13/11/06 21:33:44 INFO mapreduce.Job: map 100% reduce 0%
13/11/06 21:33:44 INFO mapred.Task: Task:attempt_local382050821_0001_r_000000_0 is done. And is in the process of committing
13/11/06 21:33:44 INFO mapred.LocalJobRunner:
13/11/06 21:33:44 INFO mapred.Task: Task attempt_local382050821_0001_r_000000_0 is allowed to commit now
13/11/06 21:33:44 INFO output.FileOutputCommitter: Saved output of task 'attempt_local382050821_0001_r_000000_0' to hdfs://hadoop01:9000/output/_temporary/0/task_local382050821_0001_r_000000
13/11/06 21:33:44 INFO mapred.LocalJobRunner: reduce > reduce
13/11/06 21:33:44 INFO mapred.Task: Task 'attempt_local382050821_0001_r_000000_0' done.
13/11/06 21:33:45 INFO mapreduce.Job: map 100% reduce 100%
13/11/06 21:33:45 INFO mapreduce.Job: Job job_local382050821_0001 completed successfully
13/11/06 21:33:45 INFO mapreduce.Job: Counters: 32
File System Counters
FILE: Number of bytes read=812174
FILE: Number of bytes written=1395157
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=63
HDFS: Number of bytes written=25
HDFS: Number of read operations=25
HDFS: Number of large read operations=0
HDFS: Number of write operations=5
Map-Reduce Framework
Map input records=2
Map output records=4
Map output bytes=41
Map output materialized bytes=61
Input split bytes=202
Combine input records=4
Combine output records=4
Reduce input groups=3
Reduce shuffle bytes=0
Reduce input records=4
Reduce output records=3
Spilled Records=8
Shuffled Maps =0
Failed Shuffles=0
Merged Map outputs=0
GC time elapsed (ms)=146
CPU time spent (ms)=0
Physical memory (bytes) snapshot=0
Virtual memory (bytes) snapshot=0 IT网,http://www.it.net.cn
Total committed heap usage (bytes)=456732672
File Input Format Counters
Bytes Read=25
File Output Format Counters
Bytes Written=25
查看程序运行结果:
[hadoop@hadoop01 test]$ hadoop fs -cat /output/part-r-00000
hadoop 1
hello 2
world 1
Hadoop2.4.x 实例测试 WordCount程序的更多相关文章
- Hadoop集群测试wordcount程序
一.集群环境搭好了,我们来测试一下吧 1.在java下创建一个wordcount文件夹:mkdir wordcount 2.在此文件夹下创建两个文件,比如file1.txt和file2.txt 在fi ...
- hadoop2.7.x运行wordcount程序卡住在INFO mapreduce.Job: Running job:job _1469603958907_0002
一.抛出问题 Hadoop集群(全分布式)配置好后,运行wordcount程序测试,发现每次运行都会卡住在Running job处,然后程序就呈现出卡死的状态. wordcount运行命令:[hado ...
- WordCount程序及测试
Github地址:https://github.com/CG0317/WordCount PSP表: PSP2.1 PSP阶段 预估耗时 (分钟) 实际耗时 (分钟) Planning 计划 30 ...
- spark学习11(Wordcount程序-本地测试)
wordcount程序 文件wordcount.txt hello wujiadong hello spark hello hadoop hello python 程序示例 package wujia ...
- hadoop安装后运行一个单实例(测试MapReduce程序)
1.安装hadoop 解压hadoop-1.2.1-bin.tar.gz包 tar -zxvf hadoop-1.2.1-bin.tar.gz /opt/modules/ 解压后在/opt/mo ...
- Hadoop环境搭建及wordcount程序
目的: 前期学习了一些机器学习基本算法,实际企业应用中算法是核心,运行的环境和数据处理的平台是基础. 手段: 搭建简易hadoop集群(由于机器限制在自己的笔记本上通过虚拟机搭建) 一.基础环境介绍 ...
- hadoop学习笔记——用python写wordcount程序
尝试着用3台虚拟机搭建了伪分布式系统,完整的搭建步骤等熟悉了整个分布式框架之后再写,今天写一下用python写wordcount程序(MapReduce任务)的具体步骤. MapReduce任务以来H ...
- 50、Spark Streaming实时wordcount程序开发
一.java版本 package cn.spark.study.streaming; import java.util.Arrays; import org.apache.spark.SparkCon ...
- Spark练习之通过Spark Streaming实时计算wordcount程序
Spark练习之通过Spark Streaming实时计算wordcount程序 Java版本 Scala版本 pom.xml Java版本 import org.apache.spark.Spark ...
随机推荐
- SQL SELECT语句
基本SQL SELECT语句 1. 下面的语句是否可以执行成功 select ename , job , sal as salary from emp; 2. 下面的语句 ...
- 手机刷机软件与ROM的盈利模式分析
一. 智能手机的兴起不过短短几年时间,更新迭代已经让实体键盘成为回忆.智能手机带来的是人们生活习惯的改变,对于手机的重度依赖,是好是坏不去评价.智能手机相对于之前的手机最大的改变不仅仅是屏幕的飞速变大 ...
- SQL常用代码收集
1.存储过程中,使用in查询时的参数处理方式 使用情形描述:传入存储过程的参数为一个字符串@IDs,以固定分隔符连接 新建字符串分割函数,然后将分割结果传入存储过程: CREATE FUNCTION ...
- js中this对象,call,apply
- Python-内置类属性
Python内置类属性 __dict__ : 类的属性(包含一个字典,由类的数据属性组成) __doc__ :类的文档字符串 __name__: 类名 __module__: 类定义所在的模块(类的全 ...
- 第一次正式小用Redis存储
由于要做一个同一个页面上多种图表数据的下载,考虑到Azure上面的session很不稳定(可用Redis provider存储session,较稳定),故决定改为Azure支持的Redis,顺便也学习 ...
- JavaScript小功能
1. JS判断是否为一个有效日期 1 2 3 4 function check(date){ return (new Date(date).getDate()==date.substring( ...
- python 基础理解...
class obj(object): def __getattribute__(self, *args, **kwargs): # 访问属性就会被调用 print("__getattribu ...
- 通过字符串寻找与字符串一致的model的属性
// 取得选中权限集合 string[] arrAuthorityId = this.hidAuthorityIds.Value.TrimEnd(',').Split(','); BLBQ_Autho ...
- jsp学习--如何定位错误和JSP和Servlet的比较
一.如何查找JSP页面中的错误 JSP页面中的JSP语法格式有问题,导致其不能被翻译成Servlet源文件,JSP引擎将提示这类错误发生在JSP页面中的位置(行和列)以及相关信息.JSP页面中的JS ...