hdu-1452 Happy 2004---因子和+逆元
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1452
题目大意:
求2004^x次方的因子和mod29的值
解题思路:
首先2004 = 2 * 2 * 3 * 167
所以2004^x = 2^(2x) * 3 ^(x) * 167 ^ (x)
因子和为:
[ (2^(2x+1) - 1) / (2 - 1) ] * [(3 ^ (x+1) - 1) / (3 - 1)] * [(167 ^ (x+1) - 1) / (167 - 1)]
最终mod29
由于有分数求模,取逆元,还需用快速幂求幂值
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
ll pow(ll a, ll b, ll m)
{
ll ans = ;
while(b)
{
if(b & )ans = ans * a % m;
a *= a;
a %= m;
b /= ;
}
return ans;
}
ll extgcd(ll a, ll b, ll& x, ll& y)
//求解ax+by=gcd(a, b)
//返回值为gcd(a, b)
{
ll d = a;
if(b)
{
d = extgcd(b, a % b, y, x);
y -= (a / b) * x;
}
else x = , y = ;
return d;
}
ll mod_inverse(ll a, ll m)
//求解a关于模上m的逆元
//返回-1表示逆元不存在
{
ll x, y;
ll d = extgcd(a, m, x, y);
return d == ? (m + x % m) % m : -;
}
int main()
{
ll x;
while(cin >> x && x)
{
ll m = ;
ll a = pow(, * x + , m) - ;
ll b = pow(, x + , m) - ;
ll c = pow(, x + , m) - ;
ll ans = a * b * c * mod_inverse(, m) * mod_inverse(, m);
ans %= m;
cout<<ans<<endl;
}
return ;
}
hdu-1452 Happy 2004---因子和+逆元的更多相关文章
- HDU 1452 Happy 2004 (逆元+快速幂+积性函数)
G - Happy 2004 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Subm ...
- HDU 1452 Happy 2004(因子和的积性函数)
题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都 ...
- 数学--数论--Hdu 1452 Happy 2004(积性函数性质+和函数公式+快速模幂+乘法逆元)
Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your ...
- Hdu 1452 Happy 2004(除数和函数,快速幂乘(模),乘法逆元)
Problem Description Considera positive integer X,and let S be the sum of all positive integer diviso ...
- hdu 1452 Happy 2004
因子和: 的因子是1,2,3,6; 6的因子和是 s(6)=1+2+3+6=12; 的因子是1,2,4,5,10,20; 20的因子和是 s(20)=1+2+4+5+10+20=42; 的因子是1,2 ...
- hdu 1452 Happy 2004 膜拜这推导过程
Happy 2004 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- HDU 1452 Happy 2004(因数和+费马小定理+积性函数)
Happy 2004 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- HDU 1452 Happy 2004(唯一分解定理)
题目链接:传送门 题意: 求2004^x的全部约数的和. 分析: 由唯一分解定理可知 x=p1^a1*p2^a2*...*pn^an 那么其约数和 sum = (p1^0+p1^1^-+p1^a1)* ...
- HDU 1452 欧拉定理
让你求$2004^x$所有因子之和,因子之和函数是积性函数$\sigma(n)=\sum_{d|n}d=\prod_{i=0}^{m}(\sum_{j=0}^{k_i}{P_i^{j}})$可用二项式 ...
- hdu 1425 Happy 2004
题目链接 hdu 1425 Happy 2004 题解 题目大意: 求 \[\sum_{d|2004^{x}}d\ mod\ 29\] 记为\(s(2004^x)\) \(sum(2004^{x})= ...
随机推荐
- 超文本传送协议 HTTP
超文本传输协议(HTTP,HyperText Transfer Protocol)是互联网上应用最为广泛的一种网络协议.所有的WWW文件都必须遵守这个标准. HTTP是一个属于应用层的面向对象的协议, ...
- 在Spark shell中基于Alluxio进行wordcount交互式分析
Spark是一个分布式内存计算框架,可部署在YARN或者MESOS管理的分布式系统中(Fully Distributed),也可以以Pseudo Distributed方式部署在单个机器上面,还可以以 ...
- Coursera 机器学习 第9章(下) Recommender Systems 学习笔记
9.5 Predicting Movie Ratings9.5.1 Problem Formulation推荐系统.推荐系统的问题表述:电影推荐.根据用户对已看过电影的打分来推测用户对其未打分的电影将 ...
- centos6.5 源码编译 mysql5.6.21
1.yum安装各个依赖包 [root@WebServer ~]# yum -y install gcc gcc-devel gcc-c++ gcc-c++-devel autoconf* automa ...
- HDU 1257——最少拦截系统——————【LIS变型题】
最少拦截系统 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Statu ...
- HDU 5289——Assignment——————【RMQ+优化求解】
Assignment Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- HDU 4027—— Can you answer these queries?——————【线段树区间开方,区间求和】
Can you answer these queries? Time Limit:2000MS Memory Limit:65768KB 64bit IO Format:%I64d & ...
- Prometheus TSDB分析
Prometheus TSDB分析 概述 Prometheus是著名开源监控项目,其监控任务调度给具体的服务器,该服务器到目标上抓取监控数据,然后保存在本地的TSDB中.自定义强大的PromQL语言查 ...
- C# 面试题 (四)
1, 请你说说.NET中类和结构的区别? 答:结构和类具有大体的语法,但是结构受到的限制比类要多. 结构不能申明有默认的构造函数,为结构的副本是又编译器创建和销毁的,所以不需要默认的构造函数和析构函数 ...
- HTTP和HTTPS的区别?
HTTP1.1(Hypertext Transfer Protocol Vertion 1.1)超文本传输协议-版本1.1它是用来在Internet上传送超文本的传送协议.它是运行在Tcp/Ip协议族 ...