hdu 4059 数论+高次方求和+容斥原理
http://acm.hdu.edu.cn/showproblem.php?
pid=4059
现场赛中通过率挺高的一道题 可是容斥原理不怎么会。。
參考了http://blog.csdn.net/acm_cxlove/article/details/7434864
1、求逆元 p=1e9+7是素数。所以由 a^(p-1)%p同余于1 可得a%p的逆元为a^(p-2)
2、segma(i^k)都能够通过推导得到求和公式 详见http://blog.csdn.net/acm_cxlove/article/details/7434864
3、容斥原理。还在恶补中 代码写的挺美丽
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <set>
#include <cmath>
#include <vector>
using namespace std;
#define ll long long
#define IN(s) freopen(s,"r",stdin)
#define OUT(s) freopen(s,"w",stdout) const int MOD = 1000000007;
const int N = 10005;
const int M = 10050;
ll n,thr;//thr 30的逆元
vector<int>fac; bool is[N]; int prm[M];
int getprm(int n){
int i, j, k = 0;
int s, e = (int)(sqrt(0.0 + n) + 1);
memset(is, 1, sizeof(is));
prm[k++] = 2; is[0] = is[1] = 0;
for(i = 4; i < n; i += 2) is[i] = 0;
for(i = 3; i < e; i += 2) if(is[i]) {
prm[k++] = i;
for(s = i * 2, j = i * i; j < n; j += s)
is[j] = 0;
// 由于j是奇数,所以+奇数i后是偶数,不必处理!
}
for( ; i < n; i += 2) if(is[i]) prm[k++] = i;
return k; // 返回素数的个数
} ll qmod(ll x,ll t)
{
ll ret=1,base=x;
while(t)
{
if(t&1)ret=(ret*base)%MOD;
base=(base*base)%MOD;
t/=2;
}
return ret;
} ll sum(ll x)
{
ll ret=1;
ret=(ret*x)%MOD;
ret=(ret*(x+1))%MOD;
ret=(ret*((2*x+1)%MOD))%MOD;
ret=(((3*x*x)%MOD+(3*x)%MOD-1+MOD)%MOD*ret)%MOD;
return (ret*thr)%MOD;
} inline ll four(ll x)
{
return (((x%MOD)*x%MOD)*x%MOD)*x%MOD;
} ll dfs(int cur, ll tmp)//容斥原理
{
ll ret=0,f;
for(int i=cur;i<fac.size();i++)
{
f=fac[i];
ret=(ret+(sum(tmp/f)*four(f))%MOD)%MOD;
ret=( (ret-dfs(i+1,tmp/f)*four(f))%MOD+MOD )%MOD;
}
return ret%MOD;
} int main()
{
//IN("hdu4059.txt");
int ncase;
ll s1,s2;
scanf("%d",&ncase);
int prmnum=getprm(N-1);
thr=qmod(30,MOD-2);
while(ncase--)
{
scanf("%I64d",&n);
//int sn=(int)sqrt(n);
fac.clear();
ll tmp=n;
for(int i=0;i<prmnum && prm[i]<=tmp;i++)
{
if(tmp%prm[i] == 0)
{
fac.push_back(prm[i]);
while(tmp%prm[i] == 0)
tmp/=prm[i];
}
}
//while(tmp%prm[i] == 0)fac.push_back(prm[i]),tmp/=prm[i];
if(tmp!=1)fac.push_back(tmp);
//cout << "FUck= " << sum(n) << endl;
printf("%I64d\n",( (sum(n)- dfs(0,n)+MOD)%MOD + MOD)%MOD );
}
return 0;
}
hdu 4059 数论+高次方求和+容斥原理的更多相关文章
- HDU 4059 The Boss on Mars(容斥原理 + 四次方求和)
传送门 The Boss on Mars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- HDU 4059 The Boss on Mars 容斥原理
The Boss on Mars Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4059 容斥原理+快速幂+逆元
E - The Boss on Mars Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64 ...
- HDU 4059 容斥初步练习
#include <iostream> #include <cstring> #include <cstdio> #include <algorithm> ...
- hdu 4507 数位dp(求和,求平方和)
http://acm.hdu.edu.cn/showproblem.php?pid=4507 Problem Description 单身! 依旧单身! 吉哥依旧单身! DS级码农吉哥依旧单身! 所以 ...
- Day3:T1数论+高精 T2搜索
T1:数论+高精(水~) 根据题意可知,从除的数越大越好(在0~9中) 所以我们只要用到高精除然后再模拟一下就可以了 //MARK:但是要注意0-9这个特殊值需要特判,因为题目要求输出的数至少是两位数 ...
- akoj-1153-p次方求和
p次方求和 Time Limit:1000MS Memory Limit:65536K Total Submit:196 Accepted:46 Description 一个很简单的问题,求1^p+ ...
- GCD and LCM HDU 4497 数论
GCD and LCM HDU 4497 数论 题意 给你三个数x,y,z的最大公约数G和最小公倍数L,问你三个数字一共有几种可能.注意123和321算两种情况. 解题思路 L代表LCM,G代表GCD ...
- HDU 4059:The Boss on Mars(数学公式+容斥原理)
http://acm.hdu.edu.cn/showproblem.php?pid=4059 题意:给出一个n,求1~n里面与n互质的数的四次方的和是多少. 思路:不知道1~n的每个数的四次方的求和公 ...
随机推荐
- Visual Studio 2017 编译Clang
到http://releases.llvm.org/download.html下载LLVM和clang源码 比如: http://releases.llvm.org/6.0.0/llvm-6.0.0. ...
- QTWebKit之QWebView学习
QWebView是一个simple web 浏览器 一般打开页面的方法为: app = QtGui.QApplication(sys.argv) web = QWebView() web.load(Q ...
- duboo服务使用thrift协议 + MQ
写一篇博客来记录从 Python 转型到 Java 的学习成果.整体架构: rpc: dubbo + thrift idl: thrift registeration: zookeeper MQ: k ...
- 【暴力】【推导】bzoj1088 [SCOI2005]扫雷Mine
考虑右侧的一个格子是否放雷,只可能对其左侧的三个格子造成影响. 也就是说,若左侧一个格子旁的两个格子已经放了雷,对第三个格子也就唯一确定了. 因此只枚举前两个格子是否放雷,剩下的暴力判断是否合法即可. ...
- 【Trie+DP】BZOJ1212-[HNOI2004]L语言
[题目大意]给出字典和文章,求出文章能够被理解的最长前缀. [思路] 1A……!先用文章建立一棵Trie树,然后对于文章进行DP.f[i]表示文章中长度为i的前缀能否被理解,如果f[i]能理解,顺着下 ...
- python3开发进阶-Djamgo框架中的JSON和AJAX
阅读目录 什么是JSON 什么是AJAX AJAX常见的应用情景 jQery实现AJAX AJAX请求如何设置csrf_token AJAX上传文件 补充Django内置的serializers 一. ...
- python3中zipfile模块的常用方法
一.zipfile模块的简述 zipfile是python里用来做zip格式编码的压缩和解压缩的,由于是很常见的zip格式,所以这个模块使用频率也是比较高的, 在这里对zipfile的使用方法做一些记 ...
- 解决VM虚拟机中的ubuntu不能全屏的问题
Ctrl+alt+T:打开终端 输入命令:sudo apt install open-vm* 运行之后重启一下虚拟机就可以了
- Java高级架构师(一)第10节:Spring+Mybatis实现DAO
maven配置memcached.jar 由于目前java memcached client没有官方的maven repository可供使用,因此使用时需要手动将其安装到本地repository. ...
- Maven多模块项目新建技巧-解决公共项目install之后可以在单独模块中直接编译
说明:如果按照这种方式http://www.cnblogs.com/EasonJim/p/8303878.html,且按照常规的install方式在子项目中编译项目,那么需要先install一下par ...