Description

Kolya has returned from a summer camp and now he's a real communication fiend. He spends all his free time on the Web chatting with his friends via ICQ. However, lately the protocol of this service was changed once again, and Kolya's client stopped working. Now, in order to communicate with his friends again, Kolya has to upgrade his client from version 1 to version n.
Kolya has found m upgrade programs on the Web. The i-th program upgrades the client from version xi to version yi and its size is dimegabytes. Each program can be installed on the corresponding version of the client only; it can't be installed on either earlier or later versions.
The first version, which is currently installed on Kolya's computer, is licensed, and many of the upgrade programs are pirate copies. If a pirate upgrade program is used, the client will always be pirated after that, whatever upgrade is used later. Some of the licensed upgrade programs can be installed on a pirate version of the client, and some of them can't. All the pirate upgrade programs can be installed on both licensed and pirate versions of the client.
Kolya is missing his friends very much, so he wants to download the necessary upgrade programs as soon as possible. Unfortunately, his Web connection is not very fast. Help Kolya determine the minimal total traffic volume necessary for upgrading the client from version 1 to version n. Kolya doesn't care if the final version n of his client is licensed or not.

Input

The first line contains space-separated integers n and m (2 ≤ n ≤ 104; 1 ≤ m ≤ 104).
Each of the following m lines describes one upgrade program in the form “xi yi di si”. Here, si is the type of the program: “Pirated”, “Cracked”, or “Licensed”. A cracked upgrade program is a licensed program that can be installed on a pirate version of the client, and a licensed program can't be installed on a pirate version. The numbers xi and yi mean that the program is installed on version xi of the client and upgrades it to version yi. The number di is the size of the program in megabytes (1 ≤ xi < yi ≤ n; 1 ≤ di ≤ 106). The data in each line are separated with exactly one space.

Output

If Kolya can upgrade the client from version 1 to version n, output “Online” in the first line and the minimal necessary total incoming traffic volume in the second line.
If it is impossible to upgrade the client, output “Offline”.

题目大意:有一个软件,要从1升级到n。每个升级有一个花费,用了P之后就不能再用L,求最小花费。

思路:正解是DP?不管。我们用最短路。建双层图,对于a→b L,在第一层建一条边。对于a→b P,从第一层的a建一条边到第二层的b,再从第二层的a建一条边到第二层的b。对于a→b C,第一层建一条边,第二层建一条边。再从第一层的n建一条边到第二层的n,费用为0。那么就保证了走过了P之后不会再走L,用SPFA求个最短路圆满解决。个人认为比D好写多了。我们要把图论发扬光大O(∩_∩)O~

代码(31MS):

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long LL; const int MAXN = ;
const int MAXE = MAXN * ; int head[MAXN];
int to[MAXE], next[MAXE], cost[MAXE];
int n, m, st, ed, ecnt; void init() {
memset(head, , sizeof(head));
ecnt = ;
} void add_edge(int u, int v, int c) {
to[ecnt] = v; cost[ecnt] = c; next[ecnt] = head[u]; head[u] = ecnt++;
//printf("%d->%d %d\n", u, v, c);
} char s[]; void input() {
scanf("%d%d", &n, &m);
int a, b, c;
for(int i = ; i < m; ++i) {
scanf("%d%d%d%s", &a, &b, &c, s);
if(*s == 'P') {
add_edge(a, b + n, c);
add_edge(a + n, b + n, c);
}
if(*s == 'L') {
add_edge(a, b, c);
}
if(*s == 'C') {
add_edge(a, b, c);
add_edge(a + n, b + n, c);
}
}
add_edge(n, n + n, );
st = , ed = * n;
} LL dis[MAXN];
bool vis[MAXN]; void SPFA() {
memset(dis, , sizeof(dis));
memset(vis, , sizeof(vis));
queue<int> que; que.push(st);
dis[st] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
vis[u] = false;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(dis[v] == - || dis[v] > dis[u] + cost[p]) {
dis[v] = dis[u] + cost[p];
if(!vis[v]) que.push(v);
vis[v] = true;
}
}
}
} void output() {
if(dis[ed] == -) puts("Offline");
else {
puts("Online");
cout<<dis[ed]<<endl;
}
} int main() {
init();
input();
SPFA();
output();
}

URAL 1741 Communication Fiend(最短路径)的更多相关文章

  1. DP/最短路 URAL 1741 Communication Fiend

    题目传送门 /* 题意:程序从1到n版本升级,正版+正版->正版,正版+盗版->盗版,盗版+盗版->盗版 正版+破解版->正版,盗版+破解版->盗版 DP:每种情况考虑一 ...

  2. Ural 1741 Communication Fiend(隐式图+虚拟节点最短路)

    1741. Communication Fiend Time limit: 1.0 second Memory limit: 64 MB Kolya has returned from a summe ...

  3. URAL 1741 Communication Fiend

    URAL 1741 思路: dp 状态:dp[i][1]表示到第i个版本为正版的最少流量花费 dp[i][0]表示到第i个版本为盗版的最少流量花费 初始状态:dp[1][0]=dp[0][0]=0 目 ...

  4. 1741. Communication Fiend(dp)

    刷个简单的DP缓缓心情 1A #include <iostream> #include<cstdio> #include<cstring> #include< ...

  5. URAL DP第一发

    列表: URAL 1225 Flags URAL 1009 K-based Numbers URAL 1119 Metro URAL 1146 Maximum Sum URAL 1203 Scient ...

  6. URAL 1297 Palindrome 后缀数组

    D - Palindrome Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Subm ...

  7. URAL 1297 最长回文子串(后缀数组)

    1297. Palindrome Time limit: 1.0 secondMemory limit: 64 MB The “U.S. Robots” HQ has just received a ...

  8. POJ 1502 MPI Maelstrom / UVA 432 MPI Maelstrom / SCU 1068 MPI Maelstrom / UVALive 5398 MPI Maelstrom /ZOJ 1291 MPI Maelstrom (最短路径)

    POJ 1502 MPI Maelstrom / UVA 432 MPI Maelstrom / SCU 1068 MPI Maelstrom / UVALive 5398 MPI Maelstrom ...

  9. Johnson 全源最短路径算法

    解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: ...

随机推荐

  1. node读写文件

    结束了一天的工作和学习,今天对于自己最大的收获就是node读写文件和对callback函数有了更深一步的理解.总结一下node读写的文件的注意事项吧(注意:下面讲的是增加数据的方法): 1.我们可以封 ...

  2. BZOJ2844: albus就是要第一个出场(线性基)

    Time Limit: 6 Sec  Memory Limit: 128 MBSubmit: 2054  Solved: 850[Submit][Status][Discuss] Descriptio ...

  3. spring boot 搭建基本套路《1》

    1. Spring复习 Spring主要是创建对象和管理对象的框架. Spring通过DI实现了IoC. Spring能很大程度的实现解耦. 需要掌握SET方式注入属性的值. 需要理解自动装配. 需要 ...

  4. JDK5后的特性整理

    为了大家对JDK有一个全面的了解,下面是我从网上查找并整理了JDK5以后的所有关键新特性!(将会持续更新中) JDK5新特性 自动装箱与拆箱 枚举 静态导入 可变参数(Varargs) 内省(intr ...

  5. Docker(一):概述

    Docker 是什么? Docker是一个开源的应用容器引擎,基于Go语言开发 并遵从Apache2.0协议开源. Docker 可以让开发者打包他们的应用以及依赖包到一个轻量级.可移植的容器中,然后 ...

  6. YII2.0 获取当前访问地址/IP信息

    假设我们当前页面的访问地址是:http://localhost/CMS/public/index.php?r=news&id=1 一. 1.获取当前域名:echo Yii::app()-> ...

  7. 基于pyecharts的IT各行业薪资展示

    我们的项目是一个信息采集系统,采集的是51job招聘网站,我爬取了Python,Java,C++,PHP还有北京各地区的职位数量,以及经验要求,和学历要求等等. 网页头; <!DOCTYPE h ...

  8. python字符串,数组操作

    今天倒是学到了很多知识,了解了python的基本数组,以及可变类型和不可变类型,还有元组,列表,字典等等的用法 然后作业如下 其中在做往list列表加东西时候遇到了小毛病,用户从控制台输入的是一个字符 ...

  9. Java学习笔记十四:如何定义Java中的类以及使用对象的属性

    如何定义Java中的类以及使用对象的属性 一:类的重要性: 所有Java程序都以类class为组织单元: 二:什么是类: 类是模子,确定对象将会拥有的特征(属性)和行为(方法): 三:类的组成: 属性 ...

  10. Linux命令备忘录:mount用于加载文件系统到指定的加载点

    mount命令用于加载文件系统到指定的加载点.此命令的最常用于挂载cdrom,使我们可以访问cdrom中的数据,因为你将光盘插入cdrom中,Linux并不会自动挂载,必须使用Linux mount命 ...