Description

Kolya has returned from a summer camp and now he's a real communication fiend. He spends all his free time on the Web chatting with his friends via ICQ. However, lately the protocol of this service was changed once again, and Kolya's client stopped working. Now, in order to communicate with his friends again, Kolya has to upgrade his client from version 1 to version n.
Kolya has found m upgrade programs on the Web. The i-th program upgrades the client from version xi to version yi and its size is dimegabytes. Each program can be installed on the corresponding version of the client only; it can't be installed on either earlier or later versions.
The first version, which is currently installed on Kolya's computer, is licensed, and many of the upgrade programs are pirate copies. If a pirate upgrade program is used, the client will always be pirated after that, whatever upgrade is used later. Some of the licensed upgrade programs can be installed on a pirate version of the client, and some of them can't. All the pirate upgrade programs can be installed on both licensed and pirate versions of the client.
Kolya is missing his friends very much, so he wants to download the necessary upgrade programs as soon as possible. Unfortunately, his Web connection is not very fast. Help Kolya determine the minimal total traffic volume necessary for upgrading the client from version 1 to version n. Kolya doesn't care if the final version n of his client is licensed or not.

Input

The first line contains space-separated integers n and m (2 ≤ n ≤ 104; 1 ≤ m ≤ 104).
Each of the following m lines describes one upgrade program in the form “xi yi di si”. Here, si is the type of the program: “Pirated”, “Cracked”, or “Licensed”. A cracked upgrade program is a licensed program that can be installed on a pirate version of the client, and a licensed program can't be installed on a pirate version. The numbers xi and yi mean that the program is installed on version xi of the client and upgrades it to version yi. The number di is the size of the program in megabytes (1 ≤ xi < yi ≤ n; 1 ≤ di ≤ 106). The data in each line are separated with exactly one space.

Output

If Kolya can upgrade the client from version 1 to version n, output “Online” in the first line and the minimal necessary total incoming traffic volume in the second line.
If it is impossible to upgrade the client, output “Offline”.

题目大意:有一个软件,要从1升级到n。每个升级有一个花费,用了P之后就不能再用L,求最小花费。

思路:正解是DP?不管。我们用最短路。建双层图,对于a→b L,在第一层建一条边。对于a→b P,从第一层的a建一条边到第二层的b,再从第二层的a建一条边到第二层的b。对于a→b C,第一层建一条边,第二层建一条边。再从第一层的n建一条边到第二层的n,费用为0。那么就保证了走过了P之后不会再走L,用SPFA求个最短路圆满解决。个人认为比D好写多了。我们要把图论发扬光大O(∩_∩)O~

代码(31MS):

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long LL; const int MAXN = ;
const int MAXE = MAXN * ; int head[MAXN];
int to[MAXE], next[MAXE], cost[MAXE];
int n, m, st, ed, ecnt; void init() {
memset(head, , sizeof(head));
ecnt = ;
} void add_edge(int u, int v, int c) {
to[ecnt] = v; cost[ecnt] = c; next[ecnt] = head[u]; head[u] = ecnt++;
//printf("%d->%d %d\n", u, v, c);
} char s[]; void input() {
scanf("%d%d", &n, &m);
int a, b, c;
for(int i = ; i < m; ++i) {
scanf("%d%d%d%s", &a, &b, &c, s);
if(*s == 'P') {
add_edge(a, b + n, c);
add_edge(a + n, b + n, c);
}
if(*s == 'L') {
add_edge(a, b, c);
}
if(*s == 'C') {
add_edge(a, b, c);
add_edge(a + n, b + n, c);
}
}
add_edge(n, n + n, );
st = , ed = * n;
} LL dis[MAXN];
bool vis[MAXN]; void SPFA() {
memset(dis, , sizeof(dis));
memset(vis, , sizeof(vis));
queue<int> que; que.push(st);
dis[st] = ;
while(!que.empty()) {
int u = que.front(); que.pop();
vis[u] = false;
for(int p = head[u]; p; p = next[p]) {
int &v = to[p];
if(dis[v] == - || dis[v] > dis[u] + cost[p]) {
dis[v] = dis[u] + cost[p];
if(!vis[v]) que.push(v);
vis[v] = true;
}
}
}
} void output() {
if(dis[ed] == -) puts("Offline");
else {
puts("Online");
cout<<dis[ed]<<endl;
}
} int main() {
init();
input();
SPFA();
output();
}

URAL 1741 Communication Fiend(最短路径)的更多相关文章

  1. DP/最短路 URAL 1741 Communication Fiend

    题目传送门 /* 题意:程序从1到n版本升级,正版+正版->正版,正版+盗版->盗版,盗版+盗版->盗版 正版+破解版->正版,盗版+破解版->盗版 DP:每种情况考虑一 ...

  2. Ural 1741 Communication Fiend(隐式图+虚拟节点最短路)

    1741. Communication Fiend Time limit: 1.0 second Memory limit: 64 MB Kolya has returned from a summe ...

  3. URAL 1741 Communication Fiend

    URAL 1741 思路: dp 状态:dp[i][1]表示到第i个版本为正版的最少流量花费 dp[i][0]表示到第i个版本为盗版的最少流量花费 初始状态:dp[1][0]=dp[0][0]=0 目 ...

  4. 1741. Communication Fiend(dp)

    刷个简单的DP缓缓心情 1A #include <iostream> #include<cstdio> #include<cstring> #include< ...

  5. URAL DP第一发

    列表: URAL 1225 Flags URAL 1009 K-based Numbers URAL 1119 Metro URAL 1146 Maximum Sum URAL 1203 Scient ...

  6. URAL 1297 Palindrome 后缀数组

    D - Palindrome Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Subm ...

  7. URAL 1297 最长回文子串(后缀数组)

    1297. Palindrome Time limit: 1.0 secondMemory limit: 64 MB The “U.S. Robots” HQ has just received a ...

  8. POJ 1502 MPI Maelstrom / UVA 432 MPI Maelstrom / SCU 1068 MPI Maelstrom / UVALive 5398 MPI Maelstrom /ZOJ 1291 MPI Maelstrom (最短路径)

    POJ 1502 MPI Maelstrom / UVA 432 MPI Maelstrom / SCU 1068 MPI Maelstrom / UVALive 5398 MPI Maelstrom ...

  9. Johnson 全源最短路径算法

    解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: ...

随机推荐

  1. Xcode DeviceSupport

    问题:Could not locate device support files. This iPhone 6s is running iOS 12.1 (16B5059d), which may n ...

  2. Python 学习笔记(八)Python列表(二)

    列表函数 追加和扩展 list.append() 在列表末尾追加新的对象 >>> dir(list) #dir 查看列表的函数 ['__add__', '__class__', '_ ...

  3. 构建vue零散笔记

    # vue项目(用webpack构建)的前提是已安装了node.js,vue,vue-cli,webpack # 主要命令构建:vue init webpack 项目名(纯英文,且不可驼峰)运行:np ...

  4. OI 刷题记录——每周更新

    每周日更新 2016.05.29 UVa中国麻将(Chinese Mahjong,Uva 11210) UVa新汉诺塔问题(A Different Task,Uva 10795) NOIP2012同余 ...

  5. redis主从同步收到以下参数影响

      repl-ping-slave-period主从心跳ping的时间间隔.默认10 repl-timeout  从节点超时时间.默认60 repl-backlog-size  主节点保存操作日志的大 ...

  6. linux命令之压缩与归档

    1.   gzip:压缩工具 语法·:gzip [选项](参数) 命令说明:运用广泛的压缩程序,文件经它压缩后,其名称后面以“.gz”扩展名 常用命令选项: -N:压缩文件后,保留文件的原文件名和时间 ...

  7. vue入门——组件基础todolist

    1. 以下是 todolist 的例子,没有用到组件:下面的3 会通过组件拆分todolist <!DOCTYPE html> <html lang="en"&g ...

  8. intellij IEDA 从svn拉环境到正常运行

    intellij IEDA  从svn拉环境到正常运行 1.svn拉项目 在项目选择界面点击Check out from Version Control 从中选择Subversion(SVN) 2.选 ...

  9. 05 redis(进阶)

    redis 阶段一.认识redis 1.什么是redis Redis是由意大利人Salvatore Sanfilippo(网名:antirez)开发的一款内存高速缓存数据库.Redis全称为:Remo ...

  10. R语言学习笔记(十六):构建分割点函数

    选取预测概率的分割点 cutoff<- function(n,p){ pp<-1 i<-0 while (pp>=0.02) { model.predfu<-rep(&q ...