树形DP-----HDU4003 Find Metal Mineral
Find Metal Mineral
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others) Total Submission(s): 2371 Accepted Submission(s): 1079
3 1 1 1 2 1 1 3 1 3 1 2 1 2 1 1 3 1
In the first case: 1->2->1->3 the cost is 3; In the second case: 1->2; 1->3 the cost is 2;
dp[pos][num]表示以pos为根节点的子树下,用去num个机器人,所得到的最小值
特别的是当num==0的时候,dp[pos][0]表示用一个机器人去走完所有子树,最后又回到pos这个节点
状态转移:dp[pos][num]=min∑{dp[pos_j][num_j]+w_j},pos_j是pos的所有儿子,
当num_j==0的时候,和别的时候不同,特别处理一下就好。
状态转移并不难,最精华的,我不认为是状态转移,而是转移时使用的那个“分组背包”思想。
使用一维数组的“分组背包”伪代码如下:
for 所有的组i
for v=V..0
for 所有的k属于组i
f[v]=max{f[v],f[v-c[k]]+w[k]}
#include <iostream>
#include <cstdio>
#include <cstring> using namespace std; struct Edge{
int to;
int value;
int next;
}edge[*];
int head[],dp[][];
int N,S,K,total; inline int MIN(int a,int b)
{
if(a<b) return a;
return b;
}
void addEdge(int start,int end,int value)
{
edge[total].to=end;edge[total].value=value;
edge[total].next=head[start];head[start]=total++; edge[total].to=start,edge[total].value=value;
edge[total].next=head[end],head[end]=total++;
} void DP(int source,int pre)
{
for(int i=head[source];i!=-;i=edge[i].next)
{
int to=edge[i].to;
if(to==pre) continue;
DP(to,source);
for(int j=K;j>=;j--)
{
dp[source][j]+=dp[to][]+*edge[i].value;
for(int k=;k<=j;k++)
dp[source][j]=MIN(dp[source][j],dp[source][j-k]+dp[to][k]+k*edge[i].value);
}
}
} int main()
{
while(scanf("%d %d %d",&N,&S,&K)!=EOF)
{
memset(dp,,sizeof(dp));
memset(head,-,sizeof(head));
total=; int x,y,cost;
for(int i=;i<N;i++)
{
scanf("%d %d %d",&x,&y,&cost);
addEdge(x,y,cost);
}
DP(S,-);
printf("%d\n",dp[S][K]);
}
return ;
}
思路和其他人差不多,谈谈自己是怎么理解的吧:
首先,用两数组建立无向树,还是第一次,费了不少功夫。定义一个结构代表边edge[i]={to,next,value},其中edge[i]表示第i条边,to是边的末点,value就不说了,next代表的是同一父节点边方向相同的与此边相邻的左边的边的编号,其中最左是-1。以此为基础建立一个边数组(注意数组大小是顶点数的两倍),还有用一个head[i]数组来表示最右边的边的编号。
解释这一段代码,当时写的理解的不是很好:
void DP(int source,int pre)
{
for(int i=head[source];i!=-;i=edge[i].next)
{
int to=edge[i].to;
if(to==pre) continue;
DP(to,source);
for(int j=K;j>=;j--)
{
dp[source][j]+=dp[to][]+*edge[i].value;
for(int k=;k<=j;k++)
dp[source][j]=MIN(dp[source][j],dp[source][j-k]+dp[to][k]+k*edge[i].value);
}
}
}
第一层for循环查找与节点source相连的各条边,to是此边对应的末点,若此边是叶子节点则to==pre(由于节点最左边的边访问完以后,只有到他父节点的边,这里只能用continue,因为不确定访问的顺序,return不合适),递归访问子节点此时应用01背包,由于dp[source][0]比较特殊单独处理,一棵子树对应一个分组,dp[source][j]=MIN(dp[source][j],dp[source][j-k]+dp[to][k]+k*edge[i].value);也比较好理解。
树形DP-----HDU4003 Find Metal Mineral的更多相关文章
- 【树形dp】Find Metal Mineral
[HDU4003]Find Metal Mineral Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (J ...
- HDU4003 Find Metal Mineral 树形DP
Find Metal Mineral Problem Description Humans have discovered a kind of new metal mineral on Mars wh ...
- HDU-4003 Find Metal Mineral 树形DP (好题)
题意:给出n个点的一棵树,有k个机器人,机器人从根节点rt出发,问访问完整棵树(每个点至少访问一次)的最小代价(即所有机器人路程总和),机器人可以在任何点停下. 解法:这道题还是比较明显的能看出来是树 ...
- HDU4003 Find Metal Mineral
看别人思路的 树形分组背包. 题意:给出结点数n,起点s,机器人数k,然后n-1行给出相互连接的两个点,还有这条路线的价值,要求最小花费 思路:这是我从别人博客里找到的解释,因为很详细就引用了 dp[ ...
- HDU-4003 Find Metal Mineral (树形DP+分组背包)
题目大意:用m个机器人去遍历有n个节点的有根树,边权代表一个机器人通过这条边的代价,求最小代价. 题目分析:定义状态dp(root,k)表示最终遍历完成后以root为根节点的子树中有k个机器人时产生的 ...
- HDU4003Find Metal Mineral[树形DP 分组背包]
Find Metal Mineral Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Other ...
- hdu 4003 Find Metal Mineral 树形DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4003 Humans have discovered a kind of new metal miner ...
- hdu 4003 Find Metal Mineral 树形dp ,*****
Find Metal Mineral Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Other ...
- HDU 4003 Find Metal Mineral(分组背包+树形DP)
题目链接 很棒的一个树形DP.学的太渣了. #include <cstdio> #include <string> #include <cstring> #incl ...
- hdu4003详解(树形dp+多组背包)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4003 Find Metal Mineral Time Limit: 2000/1000 MS (Jav ...
随机推荐
- @SessionAttributes和@ModelAttribute
一.@ModelAttribute 在默认情况下,ModelMap 中的属性作用域是 request 级别是,也就是说,当本次请求结束后,ModelMap 中的属性将销毁.如果希望在多个请求中共享 M ...
- 三种实现Ajax的方式
本文主要是比较三种实现Ajax的方式 1. prototype.js 2. jquery1.3.2.min.js 3. json2.js Java代码 收藏代码 后台处理程序(Servlet),访问路 ...
- 蓝桥杯 算法训练 ALGO-50 数组查找及替换
算法训练 数组查找及替换 时间限制:1.0s 内存限制:512.0MB 问题描述 给定某整数数组和某一整数b.要求删除数组中可以被b整除的所有元素,同时将该数组各元素按从小到大排序.如果数组元 ...
- [转载]交换机STP协议
注:之前做一个项目,测试部使用2个公司的交换机,H3C和H公司的,H公司的交换机是OEM H3C的交换机,正常来说两者使用没有区别. 但是使用中发现,如果设备的多个对外业务网口连接的交换机的聚合网口, ...
- loadrunner 学习 1 —— 关于loadrunner的安装/破解
从网上下载了loadrunner 11, .iso格式的镜像文件,百度一下,发现要用专门的软件才能在windows7 下安装 iso,我选的是 软件魔方. 安装完破解时,略有曲折, 主要是要以管理员的 ...
- Oracle 利用执行计划来避免排序操作
在oracle中,利用index来避免排序 SQL) NOT NULL); SQL> CREATE INDEX IND_T_NOSORT_NAME ON T_NOSORT(NAME); SQL& ...
- DB2的安装
jiangxin@db01:~$ su – root #切换到root用户 密码: root@db01:~# uname -a #查看内核和操作系统信息 Linux db01 4.4.0-66-gen ...
- a标签的四个伪类是什么?如何排序?为什么?
爱恨分明原则: l v h a 注释:为了产生预期的效果,在 CSS 定义中,a:hover 必须位于 a:link 和 a:visited 之后 ! 注释:为了产生预期的效果,在 CSS 定义中,a ...
- Android 4 学习(10):Adapters简介
参考<Professional Android 4 Development> Adapters简介 Adapter用于将数据和实现AdapterView接口的ViewGroup绑定在一起. ...
- Ubantu下安装adobe flash player插件
用火狐看视频,要打开Adobe官网下载xxxx,太麻烦. 可以在Terminal下输入: apt-get install flashplugin-nonfree 好了.