BZOJ3243 [Noi2013]向量内积 【乱搞】
题目链接
题解
模数只有\(2\)或\(3\),可以大力讨论
如果模数为\(2\),乘积结果只有\(1\)或\(0\)
如果一个向量和前面所有向量乘积都为\(1\),那么其和前面向量前缀和的乘积就唯一确定
我们维护向量前缀和,第一个乘积情况不符的向量一定是答案,然后再枚举另一个向量即
\(O(nd)\)
如果模数为\(3\),乘积如果不为\(0\),还可以为\(1\)或\(2\),我们讨论的方法就不适用了
其实还是可以的
\]
我们只要维护平方和即可
如何维护平方和?
\]
就相当于原来的\(d\)维向量变成了\(d^2\)维,\(O(nd^2)\)也是可以过的
#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 100005,maxm = 105,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,d,P;
int a[maxn][maxm],id[maxn];
int sum[maxm],Sum[maxm][maxm];
int mult(int* a,int* b){
int re = 0;
for (int i = 1; i <= d; i++) re = (re + a[i] * b[i] % P) % P;
return re;
}
int Mult(int a[],int b[][maxm]){
int re = 0;
for (int i = 1; i <= d; i++)
for (int j = 1; j <= d; j++)
re = (re + a[i] * a[j] * b[i][j] % P) % P;
return re;
}
void solve1(){
for (int i = 1; i <= d; i++) sum[i] = a[id[1]][i];
for (int i = 2; i <= n; i++){
int t = mult(a[id[i]],sum);
if (t != ((i - 1) & 1)){
for (int k = 1; k < i; k++)
if (!mult(a[id[k]],a[id[i]])){
printf("%d %d\n",min(id[k],id[i]),max(id[i],id[k]));
break;
}
return;
}
for (int j = 1; j <= d; j++) sum[j] = (sum[j] + a[id[i]][j]) % P;
}
printf("-1 -1\n");
}
void solve2(){
for (int i = 1; i <= d; i++)
for (int j = 1; j <= d; j++)
Sum[i][j] = a[id[1]][i] * a[id[1]][j] % P;
for (int i = 2; i <= n; i++){
int t = Mult(a[id[i]],Sum);
if (t != (i - 1) % P){
for (int k = 1; k < i; k++)
if (!mult(a[id[k]],a[id[i]])){
printf("%d %d\n",min(id[k],id[i]),max(id[i],id[k]));
break;
}
return;
}
for (int j = 1; j <= d; j++)
for (int k = 1; k <= d; k++)
Sum[j][k] = (Sum[j][k] + a[id[i]][j] * a[id[i]][k] % P) % P;
}
printf("-1 -1\n");
}
int main(){
srand(time(NULL));
n = read(); d = read(); P = read();
for (int i = 1; i <= n; i++)
for (int j = 1; j <= d; j++)
a[i][j] = read() % P;
for (int i = 1; i <= n; i++) id[i] = i;
random_shuffle(id + 1,id + 1 + n);
if (P == 2) solve1();
else solve2();
return 0;
}
BZOJ3243 [Noi2013]向量内积 【乱搞】的更多相关文章
- BZOJ3243 NOI2013向量内积(随机化)
考虑奇技淫巧. 首先是k=2.对向量维护一个前缀和,每次将当前向量与前缀和点乘.如果点乘结果不等于i-1&1,说明当前向量至少和之前的某个向量的数量积是2的倍数,暴力找就可以了.当然等于i-1 ...
- 【BZOJ-3243】向量内积 随机化 + 矩阵
3243: [Noi2013]向量内积 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1249 Solved: ...
- 【fake题解】[NOI2013]向量内积
[fake题解][NOI2013]向量内积 做法1 大暴力.哪里不会T哪里. 做法2 所有数都%=k不影响结果.(废话 k的取值只有2和3,所以肯定是要分类讨论的.k=2肯定简单些啦. k=2 出现的 ...
- [Noi2013]向量内积
来自FallDream的博客,未经允许,请勿转载,谢谢. 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: $\sum_{i=1 ...
- P1224 [NOI2013]向量内积
传送门 发现这个内积和矩乘有点像,考虑构造一个 $n$ 行 $m$ 列的矩阵 $A$,每一行都是一个题目给定的 $m$ 维向量 设 $B=AA^T$ ,其中 $A^T$ 为 $A$ 的转置矩阵,那么对 ...
- luogu P1224 [NOI2013]向量内积
传送门 挺有意思的一道题 暴力60就是枚举每个向量暴力check,随机选向量就能多骗一些分 然后两个向量内积要模\(k\)为\(0\),那么如果全部不为\(0\)就不合法.先考虑\(k=2\),对于向 ...
- BZOJ3243/UOJ121 [Noi2013]向量内积
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- 3243: [Noi2013]向量内积 - BZOJ
Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知 ...
- 【uoj121】 NOI2013—向量内积
http://uoj.ac/problem/121 (题目链接) 题意 给出${n}$个${d}$维向量,问是否有两个不同的向量的内积是${k}$的倍数. Solution 又卡了一上午常数,我弃了T ...
随机推荐
- 吐血分享:QQ群霸屏技术(初级篇)
QQ群,仿似一个冷宫;But,你真摒弃不起. 某人,坐拥2000多个2000人群,月收入10w+,此类人数少,皆因多年的沉淀,以形成完全的壁垒,难以企及的层次. 流量的分散,QQ群相对比较优质的地带, ...
- python 用装饰器写登录
# 1.编写装饰器,为多个函数加上认证的功能(用户的账号密码来源于文件), # 要求登录成功一次,后续的函数都无需再输入用户名和密码 # FLAG = False # def login(func): ...
- go web处理上传
要使表单能够上传文件,第一步就是添加form的enctype属性,enctype属性有如下三种情况: application/x-www-form-urlencoded 表示在发送前编码所有字符(默认 ...
- QOS-CBQ概述
QOS-CBQ概述 2018年7月7日 19:56 CBQ(基于类的对列)是一种基于QOS policy实现的拥塞管理技术. CBQ中包含一个LLQ(低延迟队列),用来支撑EF(快速转发)类业 ...
- mac制作U盘启动器
Infi-chu: http://www.cnblogs.com/Infi-chu/ 一.所需工具及必要条件: 1. 首先需要一个大于16GB U盘. 2.电脑系统版本应该大于10.11.X(因为之前 ...
- [Cracking the Coding Interview] 4.6 Successor 后继节点
Write an algorithm to find the 'next' node(i.e. in-order successor) of a given node in a binary sear ...
- python2.7入门--- 日期和时间
Python 程序能用很多方式处理日期和时间,转换日期格式是一个常见的功能.我们今天就来看一下这方面,首先得知道,Python 提供了一个 time 和 calendar 模块可以用于格式化日 ...
- 谈谈WPF中的CollectionView与CollectionViewSource (1)
原文:谈谈WPF中的CollectionView与CollectionViewSource (1) 谈谈WPF中的CollectionView与CollectionViewSource (1) ...
- Hadoop启动后无法启动NodeManager
在配置完Hadoop集群后,使用命令:“start-all.sh”进行启动集群.然后使用命令:“jps”查看进程启动情况,发现没有NodeManager 只需要使用命令:cd /usr/local/ ...
- Linux使用imagemagick的convert命令压缩图片,节省服务器空间
1,安装imagemagick yum install ImageMagick 2,获取图片 find ./ -regex '.*\(jpg\|JPG\|png\|jpeg\)' -size +500 ...