E. Intercity Travelling
1.5 seconds
256 megabytes
standard input
standard output
Leha is planning his journey from Moscow to Saratov. He hates trains, so he has decided to get from one city to another by car.
The path from Moscow to Saratov can be represented as a straight line (well, it's not that straight in reality, but in this problem we will consider it to be straight), and the distance between Moscow and Saratov is nn km. Let's say that Moscow is situated at the point with coordinate 00 km, and Saratov — at coordinate nn km.
Driving for a long time may be really difficult. Formally, if Leha has already covered ii kilometers since he stopped to have a rest, he considers the difficulty of covering (i+1)(i+1)-th kilometer as ai+1ai+1. It is guaranteed that for every i∈[1,n−1]i∈[1,n−1] ai≤ai+1ai≤ai+1. The difficulty of the journey is denoted as the sum of difficulties of each kilometer in the journey.
Fortunately, there may be some rest sites between Moscow and Saratov. Every integer point from 11 to n−1n−1 may contain a rest site. When Leha enters a rest site, he may have a rest, and the next kilometer will have difficulty a1a1, the kilometer after it — difficulty a2a2, and so on.
For example, if n=5n=5 and there is a rest site in coordinate 22, the difficulty of journey will be 2a1+2a2+a32a1+2a2+a3: the first kilometer will have difficulty a1a1, the second one — a2a2, then Leha will have a rest, and the third kilometer will have difficulty a1a1, the fourth — a2a2, and the last one — a3a3. Another example: if n=7n=7 and there are rest sites in coordinates 11 and 55, the difficulty of Leha's journey is 3a1+2a2+a3+a43a1+2a2+a3+a4.
Leha doesn't know which integer points contain rest sites. So he has to consider every possible situation. Obviously, there are 2n−12n−1different distributions of rest sites (two distributions are different if there exists some point xx such that it contains a rest site in exactly one of these distributions). Leha considers all these distributions to be equiprobable. He wants to calculate pp — the expected value of difficulty of his journey.
Obviously, p⋅2n−1p⋅2n−1 is an integer number. You have to calculate it modulo 998244353998244353.
The first line contains one number nn (1≤n≤1061≤n≤106) — the distance from Moscow to Saratov.
The second line contains nn integer numbers a1a1, a2a2, ..., anan (1≤a1≤a2≤⋯≤an≤1061≤a1≤a2≤⋯≤an≤106), where aiai is the difficulty of ii-th kilometer after Leha has rested.
Print one number — p⋅2n−1p⋅2n−1, taken modulo 998244353998244353.
2
1 2
5
4
1 3 3 7
60
理解题意题
https://www.cnblogs.com/Dillonh/p/9313493.html
公式推导过程 看这个博客
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int mod = ;
const LL maxn = 1e6 + ;
LL n,ans=,a[maxn],b[maxn];
int main() {
b[]=;
for (int i= ;i<maxn ;i++) b[i]=*b[i-]%mod;
scanf("%lld",&n);
for (int i= ;i<n ;i++) scanf("%lld",&a[i]);
for (int i= ;i<n ;i++)
ans=(ans+a[i]*((b[n--i]+((n-i-)*b[n---i]%mod))%mod)%mod)%mod;
printf("%lld\n",ans);
return ;
}
E. Intercity Travelling的更多相关文章
- Codeforces D. Intercity Travelling(区间组合)
题目描述: D. Intercity Travelling time limit per test 1.5 seconds memory limit per test 256 megabytes in ...
- Codeforces 1009 E. Intercity Travelling(计数)
1009 E. Intercity Travelling 题意:一段路n个点,走i千米有对应的a[i]疲劳值.但是可以选择在除终点外的其余n-1个点休息,则下一个点开始,疲劳值从a[1]开始累加.休息 ...
- Educational Codeforces Round 47 (Rated for Div. 2)E.Intercity Travelling
题目链接 大意:一段旅途长度N,中间可能存在N-1个休息站,连续走k长度时,疲劳值为a1+a2+...+aka_1+a_2+...+a_ka1+a2+...+ak,休息后a1a_1a1开始计, ...
- CF1009E [Intercity Travelling]
这道题先考虑一种暴力n方做法 设\(f_i\)表示到\(i\)点所有情况的困难度之和(\(f_0=0\)),\(pre_i=\sum_{j=1}^{i} a_j\) 考虑从点\(j\)中途不经过休息站 ...
- CodeForces - 1009E Intercity Travelling
题面在这里! 可以发现全是求和,直接拆开算贡献就好了 #include<bits/stdc++.h> #define ll long long using namespace std; c ...
- Educational Codeforces Round 47 (Rated for Div. 2) :E. Intercity Travelling
题目链接:http://codeforces.com/contest/1009/problem/E 解题心得: 一个比较简单的组合数学,还需要找一些规律,自己把方向想得差不多了但是硬是找不到规律,还是 ...
- Intercity Travelling CodeForces - 1009E (组合计数)
大意: 有一段$n$千米的路, 每一次走$1$千米, 每走完一次可以休息一次, 每连续走$x$次, 消耗$a[1]+...+a[x]$的能量. 休息随机, 求消耗能量的期望$\times 2^{n-1 ...
- 1009E Intercity Travelling 【数学期望】
题目:戳这里 题意:从0走到n,难度分别为a1~an,可以在任何地方休息,每次休息难度将重置为a1开始.求总难度的数学期望. 解题思路: 跟这题很像,利用期望的可加性,我们分析每个位置的状态,不管怎么 ...
- Codeforces 1009E Intercity Travelling | 概率与期望
题目链接 题目大意: 一个人要从$A$地前往$B$地,两地相距$N$千米,$A$地在第$0$千米处,$B$地在第$N$千米处. 从$A$地开始,每隔$1$千米都有$\dfrac{1}{2}$的概率拥有 ...
随机推荐
- 675. Cut Off Trees for Golf Event
// Potential improvements: // 1. we can use vector<int> { h, x, y } to replace Element, sortin ...
- R语言学习笔记(十):零碎知识点(21-25)
21--assign() assign函数可以通过变量名的字符串来赋值 > assign('a', 1:3) > a [1] 1 2 3 > b <- c('a') > ...
- intellij idea之git执行打标签(tag)和删除标签
intellij idea 版本为2017.2.6 进入Version Control-->log 1.在之前版本中,右键,新建标签 2.输入标签名称,建议输入版本号的方式 3.push标签 由 ...
- P2212 [USACO14MAR]浇地Watering the Fields
P2212 [USACO14MAR]浇地Watering the Fields 题目描述 Due to a lack of rain, Farmer John wants to build an ir ...
- 获得通讯录并拨打电话 Android
由于通讯录在手机里是以数据库贮存的 所以我们可以通过getContentResolver来获得通讯录 ,这个方法返回一个游标的数据类型,通过moveToNext()方法来获取所有的手机号码信息, 当然 ...
- 问题:docker pull 用户登陆tricky,Error response from daemon: unauthorized: incorrect username or password
问题描述: PS C:\WINDOWS\system32> docker pull rabbitmqUsing default tag: latest Please login prior to ...
- 第一篇 Python安装与环境变量的配置
开发语言有很多种,为什么选Python? 先对各种开发语言做个初识和分类如下:高级语言:Python Java.PHP C# Go ruby C++... ---> 字节码低级语言:C.汇编 - ...
- python 基础篇 04(列表 元组 常规操作)
本节主要内容:1. 列表2. 列表的增删改查3. 列表的嵌套4. 元组和元组嵌套5. range 一. 列表1.1 列表的介绍列表是python的基础数据类型之一 ,其他编程语言也有类似的数据类型. ...
- 【CodeForces】9B-Running Student
目录 Question Description Input Output Solution 解法1 Question Description 小明在公交车始发站上车,他应该在哪个站点下车才能最快到达学 ...
- C++的几种字符类型
我们在C学过了char字符类型. 在C++中,char是基本的字符类型,但却不仅仅有这一种字符类型! 类型 含义 该类型数据所占的最小比特位数 char 字符 8位(即可表示28个字符) wchar_ ...