传送门

两个感受:码量感人……大佬nb……

规则一:$m$条路径都不相交,那么每一个点只能经过一次,那么考虑拆点,把每一个点拆成$A_{i,j}$和$B_{i,j}$,然后两点之间连一条容量$1$,费用该点本身数值的边,表明这个点只能被选一次,然后每一个点的$B$向它能到达的点的$A$连边,表明能从这个点到另一个点,容量随意,费用$0$,然后源点向第一排所有点的$A$连边,最后一排所有点的$B$向汇点连边,都是容量随意,费用$0$,然后跑一个最大费用流即可

规则二:每一个点可以被选多次,那么不用拆点了,直接每一个点向它能到的点连边,容量$1$,表明一条边只能被选一次,费用为该点的数值,源点向第一排所有点连边,容量$1$,费用$0$,最后一排所有点向汇点连边,费用为该点的数值,然后跑一个最大费用流即可

规则三:把每一条边只能选一次的限制去掉,总之就是除了源点到第一排的边,其他边的容量都改为$inf$,然后跑一个最大费用流

 //minamoto
#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=,M=;
int ver[M],head[N],flow[M],edge[M],Next[M],tot=;
int vis[N],dis[N],disf[N],Pre[N],last[N],s=,t=;
int a[][],b[][];
queue<int> q;
inline void add(int u,int v,int f,int e){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot,flow[tot]=f,edge[tot]=e;
ver[++tot]=u,Next[tot]=head[v],head[v]=tot,flow[tot]=,edge[tot]=-e;
}
bool spfa(){
memset(dis,0xef,sizeof(dis));
q.push(s),dis[s]=,disf[s]=inf,Pre[t]=-;
while(!q.empty()){
int u=q.front();q.pop();vis[u]=;
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(flow[i]&&dis[v]<dis[u]+edge[i]){
dis[v]=dis[u]+edge[i],last[v]=i,Pre[v]=u;
disf[v]=min(disf[u],flow[i]);
if(!vis[v]) vis[v]=,q.push(v);
}
}
}
return ~Pre[t];
}
int dinic(){
int maxcost=;
while(spfa()){
int u=t;
maxcost+=disf[t]*dis[t];
while(u!=s){
flow[last[u]]-=disf[t];
flow[last[u]^]+=disf[t];
u=Pre[u];
}
}
return maxcost;
}
void clear(){
tot=,memset(head,,sizeof(head));
}
int main(){
int n,m,k,o,num=;
k=m=read(),n=read();
o=((m<<)+n-)*n>>;
for(int i=;i<=n;++i,++k)
for(int j=;j<=k;++j)
a[i][j]=read(),b[i][j]=++num;
k=m;
for(int i=;i<=k;++i)
add(s,b[][i],,);
for(int i=;i<n;++i,++k)
for(int j=;j<=k;++j){
add(b[i][j],b[i][j]+o,,a[i][j]);
add(b[i][j]+o,b[i+][j],,);
add(b[i][j]+o,b[i+][j+],,);
}
for(int i=;i<=k;++i){
add(b[n][i],b[n][i]+o,,a[n][i]);
add(b[n][i]+o,t,,);
}
printf("%d\n",dinic());
clear();
k=m;
for(int i=;i<=k;++i)
add(s,b[][i],,);
for(int i=;i<n;++i,++k)
for(int j=;j<=k;++j){
add(b[i][j],b[i+][j],,a[i][j]);
add(b[i][j],b[i+][j+],,a[i][j]);
}
for(int i=;i<=k;++i)
add(b[n][i],t,inf,a[n][i]);
printf("%d\n",dinic());
clear();
k=m;
for(int i=;i<=m;++i) add(s,b[][i],,);
for(int i=;i<n;++i,++k)
for(int j=;j<=k;++j){
add(b[i][j],b[i+][j],inf,a[i][j]);
add(b[i][j],b[i+][j+],inf,a[i][j]);
}
for(int i=;i<=k;++i) add(b[n][i],t,inf,a[n][i]);
printf("%d\n",dinic());
return ;
}

洛谷P4013 数字梯形问题(费用流)的更多相关文章

  1. 洛谷P4013 数字梯形问题(费用流)

    题意 $N$行的矩阵,第一行有$M$个元素,第$i$行有$M + i - 1$个元素 问在三个规则下怎么取使得权值最大 Sol 我只会第一问qwq.. 因为有数量的限制,考虑拆点建图,把每个点拆为$a ...

  2. 洛谷 P4013 数字梯形问题【最大费用最大流】

    第一问:因为每个点只能经过一次,所以拆点限制流量,建(i,i',1,val[i]),然后s向第一行建(s,i,1,0),表示每个点只能出发一次,然后最后一行连向汇点(i',t,1,0),跑最大费用最大 ...

  3. 洛谷P4013数字梯形问题——网络流24题

    题目:https://www.luogu.org/problemnew/show/P4013 最大费用最大流裸题: 注意:在第二种情况中,底层所有点连向汇点的边容量应该为inf,因为可以有多条路径结束 ...

  4. 洛谷 P4013 数字梯形问题

    ->题目链接 题解: 网络流. #include<cstdio> #include<iostream> #include<queue> #include< ...

  5. codevs 1913 数字梯形问题 费用流

    题目链接 给你一个数字梯形, 最上面一层m个数字, 然后m+1,......m+n-1个. n是层数. 在每个位置, 可以向左下或右下走.然后让你从最顶端的m个数字开始, 走出m条路径, 使得路过的数 ...

  6. 洛谷 1004 dp或最大费用流

    思路: dp方法: 设dp[i][j][k][l]为两条没有交叉的路径分别走到(i,j)和(k,l)处最大价值. 则转移方程为 dp[i][j][k][l]=max(dp[i-1][j][k-1][l ...

  7. 2018.10.15 loj#6010. 「网络流 24 题」数字梯形(费用流)

    传送门 费用流经典题. 按照题目要求建边. 为了方便我将所有格子拆点,三种情况下容量分别为111,infinfinf,infinfinf,费用都为validi,jval_{id_{i,j}}valid ...

  8. 洛谷P4003 无限之环(费用流)

    传送门 神仙题啊……不看题解我可能一年都不一定做得出来……FlashHu大佬太强啦 到底是得有怎样的脑回路才能一眼看去就是费用流啊…… 建好图之后套个板子就好了,那么我们着重来讨论一下怎么建图 首先, ...

  9. 洛谷P4012 深海机器人问题(费用流)

    题目描述 深海资源考察探险队的潜艇将到达深海的海底进行科学考察. 潜艇内有多个深海机器人.潜艇到达深海海底后,深海机器人将离开潜艇向预定目标移动. 深海机器人在移动中还必须沿途采集海底生物标本.沿途生 ...

随机推荐

  1. springboot成神之——basic auth和JWT验证结合

    本文介绍basic auth和JWT验证结合 目录结构 依赖 config配置文件WebSecurityConfig filter过滤器JWTLoginFilter filter过滤器JWTAuthe ...

  2. Eclipse使用总结——使用Eclipse打包带源码的jar包

    平时开发中,我们喜欢将一些类打包成jar包,然后在别的项目中继续使用,不过由于看不到jar包里面的类的源码了,所以也就无法调试,要想调试,那么就只能通过关联源代码的形式,这样或多或少也有一些不方便,今 ...

  3. C#递归所以部门展示到TreeView

    C#递归所以部门展示到TreeView 1.首先是数据库表的设计 新建一张部门表:TestUser表 1.ID自增int主键 2.DeptName:nchar(10)3.DeptCode:nchar( ...

  4. 只能在执行Render() 的过程中调用 RegisterForEventValidation;

    October 17, 2008  3:28 PMMarch 29, 2013  8:28 PM Aillo 编程   0 Comments 在实现"将GridView中的数据导出到Exce ...

  5. leetcode893

    class Solution { public: int numSpecialEquivGroups(vector<string>& A) { set<string> ...

  6. Java字节码

    Java字节码 javap -c 反编译.class文件可得字节码 知乎讨论https://www.zhihu.com/question/27831730 栈和局部变量操作 将常量压入栈的指令 aco ...

  7. DataSet、DataTable转换List(泛型集合与DataSet互相转换 )

    using System.Data; using System.Reflection; using System.Collections; using System.Collections.Gener ...

  8. laravel使用ORM操作数据库

    laravel使用ORM操作数据库 public function mode(){ //查询所有 $isok=Student::get(); 新增. (1) $isok=Student::create ...

  9. Android 创建项目出现No resource found that matches the given name Theme.AppCompat.Light

    关于为何出现No resource found that matches the given name ‘Theme.AppCompat.Light’的原因 这边博客已经写的很清楚了 大家可以参考一下 ...

  10. Python 安装urllib3

    一.系统环境 操作系统:Win10 64位 Python版本:Python 3.7.0 二.报错信息 No module named 'urllib3' 三.安装参考 1.参照网上的安装方法通过pip ...