非常无脑的板子题,就当是练一下板子

我们可以先将所有的操作离线下来,之后那些搜集过情报的点就有了点权,对于查询操作,就是查询一下这条路径上有几个点点权满足\(st<=now-C+1\)

#include<iostream>
#include<cstdio>
#include<cstring>
#define re register
#define maxn 200005
int n,cnt,tot,m,num;
int l[maxn*29],r[maxn*29],d[maxn*29];
int rt[maxn],a[maxn];
int cur;
int X[maxn],Y[maxn],C[maxn],Day[maxn];
int build(int x,int y)
{
int root=++cnt;
if(x==y) return root;
int mid=x+y>>1;
l[root]=build(x,mid),r[root]=build(mid+1,y);
return root;
}
int change(int pre,int x,int y,int pos)
{
int root=++cnt;
d[root]=d[pre]+1;
if(x==y) return root;
l[root]=l[pre],r[root]=r[pre];
int mid=x+y>>1;
if(pos<=mid) l[root]=change(l[pre],x,mid,pos);
else r[root]=change(r[pre],mid+1,y,pos);
return root;
}
struct E
{
int v,nxt;
}e[maxn<<1];
int head[maxn],sum[maxn],son[maxn],top[maxn],fa[maxn],deep[maxn];
inline void add_edge(int x,int y)
{
e[++num].v=y;
e[num].nxt=head[x];
head[x]=num;
}
void dfs1(int x)
{
rt[x]=change(rt[fa[x]],1,n+1,a[x]);
sum[x]=1;
int maxx=-1;
for(re int i=head[x];i;i=e[i].nxt)
if(!deep[e[i].v])
{
deep[e[i].v]=deep[x]+1;
fa[e[i].v]=x;
dfs1(e[i].v);
sum[x]+=sum[e[i].v];
if(sum[e[i].v]>maxx) maxx=sum[e[i].v],son[x]=e[i].v;
}
}
void dfs2(int x,int topf)
{
top[x]=topf;
if(!son[x]) return;
dfs2(son[x],topf);
for(re int i=head[x];i;i=e[i].nxt)
if(deep[e[i].v]>deep[x]&&e[i].v!=son[x]) dfs2(e[i].v,e[i].v);
}
inline int LCA(int x,int y)
{
while(top[x]!=top[y])
{
if(deep[top[x]]<deep[top[y]]) std::swap(x,y);
x=fa[top[x]];
}
if(deep[x]<deep[y]) return x;
return y;
}
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
int query(int p1,int p2,int p3,int p4,int x,int y,int ll,int rr)
{
if(ll<=x&&rr>=y) return d[p1]+d[p2]-d[p3]-d[p4];
int mid=x+y>>1;
if(rr<=mid) return query(l[p1],l[p2],l[p3],l[p4],x,mid,ll,rr);
if(ll>mid) return query(r[p1],r[p2],r[p3],r[p4],mid+1,y,ll,rr);
return query(l[p1],l[p2],l[p3],l[p4],x,mid,ll,rr)+query(r[p1],r[p2],r[p3],r[p4],mid+1,y,ll,rr);
}
int main()
{
n=read();
int RT=0,x;
for(re int i=1;i<=n;i++)
{
x=read();
if(!x) RT=i;
else add_edge(x,i);
}
rt[0]=build(1,n+1);
m=read();
int opt;
for(re int i=1;i<=m;i++)
{
opt=read();
if(opt==1) X[++cur]=read(),Y[cur]=read(),C[cur]=read(),Day[cur]=i;
else a[read()]=i;
}
for(re int i=0;i<=n+1;i++)
if(!a[i]) a[i]=n+1;
rt[0]=change(rt[0],1,n+1,n+1);
deep[RT]=1,dfs1(RT),dfs2(RT,RT);
for(re int i=1;i<=cur;i++)
{
int lca=LCA(X[i],Y[i]);
printf("%d ",deep[X[i]]+deep[Y[i]]-2*deep[lca]+1);
if(Day[i]-C[i]-1<1) puts("0");
else printf("%d\n",query(rt[X[i]],rt[Y[i]],rt[lca],rt[fa[lca]],1,n+1,1,Day[i]-C[i]-1));
}
return 0;
}

【[SCOI2015]情报传递】的更多相关文章

  1. BZOJ_4448_[Scoi2015]情报传递_主席树

    BZOJ_4448_[Scoi2015]情报传递_主席树 Description 奈特公司是一个巨大的情报公司,它有着庞大的情报网络.情报网络中共有n名情报员.每名情报员口J-能有 若T名(可能没有) ...

  2. BZOJ 4448: [Scoi2015]情报传递 树链剖分 主席树

    4448: [Scoi2015]情报传递 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4448 Description 奈特公司是一个巨 ...

  3. 【BZOJ4448】[Scoi2015]情报传递 主席树+LCA

    [BZOJ4448][Scoi2015]情报传递 Description 奈特公司是一个巨大的情报公司,它有着庞大的情报网络.情报网络中共有n名情报员.每名情报员能有若干名(可能没有)下线,除1名大头 ...

  4. [SCOI2015]情报传递[树剖+主席树]

    [SCOI2015]情报传递 题意大概就是 使得在 \(i\) 时刻加入一个情报员帮您传情报 然后询问 \(x,y,c\) 指 \(x\)到\(y\)多少个人有风险-(大于c)的都有风险-每天风险值+ ...

  5. bzoj4448 [Scoi2015]情报传递

    第一问不解释,对于第二问的处理,可以使用cdq分治,假设分治的询问区间是[L,R],那么我们对于标号在[L,mid]的修改操作赋予一个权值,因为在当前[L,R]中[L,mid]的修改操作只会对[mid ...

  6. bzoj 4448 [Scoi2015]情报传递(主席树,LCA)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4448 [题意] 给定一颗树,询问一条路径上权值小于t-c的点数. [思路] 将一个2查 ...

  7. bzoj4448 SCOI2015 情报传递 message

    传送门bzoj4448 题解 离线之后构建树上主席树,每个点的线段树维护到根路径的信息,不用链剖(我的链剖只是拿来求\(\mathrm{lca}\)的),时空复杂度\(O(n\log{n})\). c ...

  8. bzoj 4448: [Scoi2015]情报传递

    Description 奈特公司是一个巨大的情报公司,它有着庞大的情报网络.情报网络中共有n名情报员.每名情报员口J-能有 若T名(可能没有)下线,除1名大头日外其余n-1名情报员有且仅有1名上线.奈 ...

  9. 2019.03.26 bzoj4448: [Scoi2015]情报传递(归并排序+树链剖分)

    传送门 题意简述: 给一棵nnn个点的树,树上每个点表示一个情报员,一共有mmm天,每天会派发以下两种任务中的一个任务: 1.搜集情报:指派T号情报员搜集情报 2.传递情报:将一条情报从X号情报员传递 ...

  10. [SCOI2015] 情报传递

    题目描述 奈特公司是一个巨大的情报公司,它有着庞大的情报网络.情报网络中共有 n 名情报员.每名情报员可能有若干名 (可能没有) 下线,除 1 名大头目外其余 n−1 名情报员有且仅有 1 名上线.奈 ...

随机推荐

  1. Python 的 __new__()方法与实例化

    __new__() 是新式类中才有的方法,它执行在构造方法创建实例之前.可以这么理解,在 Python 中类中的构造方法 __init__() 负责将类实例化,而在 __init__() 启动之前,_ ...

  2. MYSQ系列-MYSQL基础增强(Mysql基本语句)

    MYSQL基础增强 库操作 创建一个使用UTF-8字符集的数据库: create database mydb character set UTF8; 创建一个带校对集的数据库 create datab ...

  3. POST 还是 GET?

    POST 还是 GET? 浏览器使用 method 属性设置的方法将表单中的数据传送给服务器进行处理.共有两种方法:POST 方法和 GET 方法. 如果采用 POST 方法,浏览器将会按照下面两步来 ...

  4. asp.net MVC3之AJAX实现(json)

    asp.net MVC3之AJAX实现(json)         分类:             Asp.net MVC              2011-08-10 13:55     2272 ...

  5. C# .net页面乱码

    可在web.config中设置 <globalization requestEncoding="utf-8" responseEncoding="utf-8&quo ...

  6. 【学习笔记】String进阶:StringBuffer类(线程安全)和StringBuilder类

    一.除了使用String类存储字符串之外,还可以使用StringBuffer类存储字符串.而且它是比String类更高效的存储字符串的一种引用数据类型. 优点: 对字符串进行连接操作时,使用Strin ...

  7. linux基础-linux和unix的区别

    有时候我们对天天使用的Linux指令,只知道怎么用,却分不清概念用法区别,我觉得很有必要整理整理大家熟视无睹的一些linux概念区别. 首先说说unix和linux的区别: linux和unix的最大 ...

  8. Java web service 异常

    1.org/apache/commons/discovery/tools/DiscoverSingleton Exception in thread "main" java.lan ...

  9. oracle之数据同步:Oracle Sql Loader使用说明(大批量快速插入数据库记录)

    1.准备表数据 select * from emp10; create sequence seq_eseq increment start maxvalue ; --得到序列的SQL语句 select ...

  10. mysql五:pymysql模块

    一.介绍 之前都是通过MySQ自带的命令行客户端工具Mysql来操作数据库,那如何在Python程序中操作数据库呢?这就需要用到pymysql模块了. 这个模块本质就是一个套接字客户端软件,使用前需要 ...