前面所讲的二叉搜索树有个比较严重致命的问题就是极端情况下当数据以排序好的顺序创建搜索树此时二叉搜索树将退化为链表结构因此性能也大幅度下降,因此为了解决此问题我们下面要介绍的与二叉搜索树非常类似的结构就诞生了;

  AVL(Adelson-Velskii and Landis)树,名字取自其发明者 G.M. Adelson-Velsky 和 E.M. Landis的首字母,AVL树是一棵特殊的二叉搜索树它与普通二叉搜索树最主要的区别就是其能够使二叉搜索树维持其左右节点的平衡;

  AVL树:其任意一个节点左子树与右子树高度差不超过1,由于此特征因此需要在AVL增删节点时维护其左右节点使该树满足该特性(左右节点平衡);

  此AVL树中节点2节点高度都为2,节点1与3节点高度都为1;节点高度为左右子树中最大的节点高度+1;

AVL树实现关键

  1、标注其节点高度

  2、计算节点平衡因子

  3、维护其节点满足左右节点高度不超过1

AVL树的实现

  1、AVL树定义

  根据AVL树的特性先定义该数据类型的结构;

 type AVL struct {
root *AVLNode
size int
compare Comparable
}
type AVLNode struct {
e interface{}
left *AVLNode
right *AVLNode
height int
}

  AVL:为定义的AVL树自定义对象

  AVLNode:为树中每个节点的节点自定义对象

  compare:为定义的用于树中节点元素进行数据对比的对象

  size:AVL树的元素个数

  root:树的根节点

  e:节点元素值

  left:左子树

  right:右子树

  height:节点高度

  AVL树与二叉搜索树一样所有很多操作都可用递归来实现,比如元素的添加、删除、查找等;

  可以说AVL树为二叉搜索树的升级版本所以并不会像出现二叉搜索树一样出现退化为O(n)时间复杂度的情况,与二叉搜索树一样通过中序遍历可得到排序好的数据,二叉搜索树的搜索、插入、删除时间复杂度为O(log(n)),n为树的深度,这里只是简单的介绍了AVL树,后面会有AVL树实现的相关介绍;

文章首发地址:Solinx

http://www.solinx.co/archives/1323

再回首数据结构—AVL树(一)的更多相关文章

  1. 再回首数据结构—AVL树(二)

    前面主要介绍了AVL的基本概念与结构,下面开始详细介绍AVL的实现细节: AVL树实现的关键点 AVL树与二叉搜索树结构类似,但又有些细微的区别,从上面AVL树的介绍我们知道它需要维护其左右节点平衡, ...

  2. 数据结构-AVL树的旋转

    http://blog.csdn.net/GabrieL1026/article/details/6311339 平衡二叉树在进行插入操作的时候可能出现不平衡的情况,AVL树即是一种自平衡的二叉树,它 ...

  3. JAVA数据结构--AVL树的实现

    AVL树的定义 在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为1,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下的时间复杂度都是.增 ...

  4. 简单数据结构———AVL树

    C - 万恶的二叉树 Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB     64b ...

  5. 数据结构--Avl树的创建,插入的递归版本和非递归版本,删除等操作

    AVL树本质上还是一棵二叉搜索树,它的特点是: 1.本身首先是一棵二叉搜索树.   2.带有平衡条件:每个结点的左右子树的高度之差的绝对值最多为1(空树的高度为-1).   也就是说,AVL树,本质上 ...

  6. 第三十二篇 玩转数据结构——AVL树(AVL Tree)

          1.. 平衡二叉树 平衡二叉树要求,对于任意一个节点,左子树和右子树的高度差不能超过1. 平衡二叉树的高度和节点数量之间的关系也是O(logn) 为二叉树标注节点高度并计算平衡因子 AVL ...

  7. Java数据结构——AVL树

    AVL树(平衡二叉树)定义 AVL树本质上是一颗二叉查找树,但是它又具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树,并且拥有自平衡机制.在AV ...

  8. 数据结构 - AVL 树

    简介 基本概念 AVL 树是最早被发明的自平衡的二叉查找树,在 AVL 树中,任意结点的两个子树的高度最大差别为 1,所以它也被称为高度平衡树,其本质仍然是一颗二叉查找树. 结合二叉查找树,AVL 树 ...

  9. 数据结构-AVL树

    实现: #ifndef AVL_TREE_H #define AVL_TREE_H #include "dsexceptions.h" #include <iostream& ...

随机推荐

  1. Vue添加新的响应式属性

    vm.userProfile = Object.assign({}, vm.userProfile, { age: , favoriteColor: 'Vue Green' })

  2. 控制台之console

    控制台中的用法有很多,比如常用的console.log(),还有不常用的 console.warn(). console.error()等,下面对控制台中主要的console方法做一个简单的介绍. 1 ...

  3. TOJ 3031 Multiple

    Description a program that, given a natural number N between 0 and 4999 (inclusively), and M distinc ...

  4. 【计算机网络】详解HttpURLConnection

    请求响应流程 设置连接参数的方法 setAllowUserInteraction setDoInput setDoOutput setIfModifiedSince setUseCaches setD ...

  5. 【Java】使用Eclipse进行远程调试,Linux下开启远程调试

    原博地址:http://blog.csdn.net/dfdsggdgg/article/details/50730311 1.center下,在startup.sh文件首行中添加如下语句 declar ...

  6. 8086实时时钟实验(二)——《x86汇编语言:从实模式到保护模式》读书笔记06

    上次我们说了代码,这次我们说说怎样看到实验结果. 首先编译源文件(我的源文件就在当前路径下,a盘和c盘在上一级目录下): nasm -f bin c08_mbr.asm -o c08_mbr.bin ...

  7. VS2008调试程序时出现"XXX mutex not created."

    1. 在 VS2008中调试一个程序,怎样都运行不起来(在IDE中无法运行) 出现恶心信息: 2. 但神奇的是,在工程目录下,直接双击exe文件 却可以启动起来,说明编译的文件没问题,有可能是IDE的 ...

  8. 九度oj题目1181:遍历链表

    题目1181:遍历链表 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2600 解决:1125 题目描述: 建立一个升序链表并遍历输出. 输入: 输入的每个案例中第一行包括1个整数:n(1 ...

  9. dpkg: error: dpkg status database is locked by another process 解决方法

    使用dpkg -i/apt命令安装,报错: ------------------------------------------------------------- dpkg: error: dpk ...

  10. NPOI之C#下载Excel

    Java中这个类库叫POI,C#中叫NPOI,很多从Java一直到.Net平台的类库为了区别大部分都是在前面加个N,比如Hibernate和NHibernate. npoi下载地址 一.使用NPOI下 ...