一直对书和各种介绍不太满意, 终于看到一篇比较好的了,迅速转载.

首先要推荐一下:http://www.alidata.org/archives/1470

阿里的大牛在上面的文章中比较详细的介绍了shuffle过程中mapper和reduce的每个过程,强烈推荐先读一下。

不过,上文没有写明一些实现的细节,比如:spill的过程,mapper生成文件的 partition是怎么做的等等,相信有很多人跟我一样在看了上面的文章后还是有很多疑问,我也是带着疑问花了很久的看了cdh4.1.0版本 shuffle的逻辑,整理成本文,为以后回顾所用。

首先用一张图展示下map的流程:

 
在上图中,我们假设此次mapreduce有多个mapper和2个reducer,p0 p1分别代表该数据应该分配到哪个reducer端。我将mapper的过程大致分为5个过程。
 
1.prepare Input。
Mapreduce程序都需要指定输入文件,输入的格式有很多种,最常见的是保存在hdfs 上的文本文件。在用户提交job到jobtrack(ResourceManager)前的job就会根据用户的输入文件计算出需要多少mapper,多 少reducer,mapper的输入InputSplit有多大,block块名称等。mapper在prepare input阶段只需要根据inputFormat类型创建对应的RecordReader打开对应的inputSplit分片即可。如果job配置了 combiner还需初始化combiner。代码见MapTask类run方法
 
2.mapper process
这里的mapper指用户使用或自己继承的mapper类,这也是所有初学mapreduce的同学首先看到的类。
[java] view plaincopy

 
  1. <span style=    * Called once for each key/value pair in the input split. Most applications
  2. * should override this, but the default is the identity function.
  3. */ ()
  4. protectedvoid throws </span>
可以看到mapper默认的map方法就是取出key,value并放到context对象中。context对象包装了一个内存中的buf,下面会介绍。
[java] view plaincopy

 
  1. <span style=publicvoidthrows while   }</span>
run方法就是mapper实际运行的过程:不停的从context的inputSplit对象中取出keyvalue对,通过map方法处理再保存到context包装的内存buf中。
 
3.buffer in memery
key value在写入context中后实际是写入MapOutputBuffer类中。在第一个阶段的初始化过程中,MapOutputBuffer类会根据配置文件初始化内存buffer,我们来看下都有哪些参数:
[java] view
plain
copy

 
  1. <span style=
  2. finalfloat
    float0.8
    finalint);
  3. iffloat1.0float0.0
    thrownew

    if) != sortmb) {

  4. thrownew

    ,

  5. classclass), job);</span>
partition:mapper的数据需要分配到reduce端的个数,由用户的job指定,默认为1.
spillper:内存buf使用到此比例就会触发spill,将内存中的数据flush成一个文件。默认为0.8
sortmb:内存buf的大小,默认100MB
indexCacheMemoryLimit:内存index的大小。默认为1024*1024
sorter:对mapper输出的key的排序,默认是快排
 
内存buffer比较复杂,贴一张图介绍一下这块内存buf的结构:
当一对keyvalue写入时首先会从wrap
buf的右侧开始往左写,同时,会把一条keyvalue的meta信息(partition,keystart,valuestart)写入到最左边的
index区域。当wrap
buf大小达到spill的触发比例后会block写入,挖出一部分数据开始spill,直到spill完成后才能继续写,不过写入位置不会置零,而是类
似循环buf那样,在spill掉数据后可以重复利用内存中的buf区域。
 
这里单独讲一下partition:
[java] view
plain
copy

 
  1. <span style=
  2. publicvoidthrows

    }</span>

在keyvalue对写入MapOutputBuffer时会调用
partitioner.getPartition方法计算partition即应该分配到哪个reducer,这里的partition只是在内存的
buf的index区写入一条记录而已,和下一个部分的partition不一样哦。看下默认的partitioner:HashPartition

[java] view
plain
copy

 
  1. <span style=
  2. publicint
    int
    return
      }</span>

HashPartition只是把key hash后按reduceTask的个数取模,因此一般来说,不同的key分配到哪个reducer是随即的!所以,reducer内的所有数据是有序的,但reducer之间的数据却是乱序的!要想数据整体排序,要不只设一个reducer,要不使用TotalOrderPartitioner!

 
4.Partition Sort Store
在第四步中,partition是和sort一起做的,负责Spill的线程在拿到一段内存buf后会调用QuickSort的sort方法进行内存中的快排。
[java] view
plain
copy

 
  1. <span style=this, mstart, mend, reporter);</span>
排序的算法是先按keyvalue记录的partition排序后按key的compare方法:
[java] view
plain
copy

 
  1. <span style=publicintfinalintfinalint
    finalint
    finalint
    finalint
    finalint
  2. if
    return
  3. return

    }</span>

因此,mapper输出的keyvalue首先是按partition聚合。而我们如果指定key的compare方法会在这里生效并进行排序。最后,一次spill的输出文件类似下图。
在对内存中的buf排序后开始写文件。
[java] view
plain
copy

 
  1. <span style=forint; i < partitions; ++i) {
  2. null
    try
    long
    new

    ifnull

  3. new
    while

    finalint

    else
    int
    while

  4. if

    new

    }</span>

如果job没有定义combiner则直接写文件,如果有combiner则在这里进行combine。
在生成spill文件后还会将此次spillRecord的记录写在一个index文件中。

[java] view
plain
copy

 
  1. <span style=

    spillRec.writeToFile(indexFilename, job);</span>

[java] view
plain
copy

 
  1. <span style=

    spillRec.putIndex(rec, i);</span>

 
5.merge
当mapper执行完毕后,就进入merge阶段。首先看下相关的配置参数:
[java] view
plain
copy

 
  1. <span style=int);</span>
mergeFactor:同时merge的文件数。
 
merge阶段的目的是将多个spill生成的中间文件合并为一个输出文件,这里的合并不同
于combiner,无论有没有配置combiner这里的merge都会执行。merge阶段的输出是一个数据文件
MapFinalOutputFile和一个index文件。看下相关代码:
[java] view
plain
copy

 
  1. <span style=

    new

    null

  2. long

    new

    ifnull

    else

    }</span>

说下merge的算法。每个spill生成的文件中keyvalue都是有序的,但不同的文
件却是乱序的,类似多个有序文件的多路归并算法。Merger分别取出需要merge的spillfile的最小的keyvalue,放入一个内存堆中,
每次从堆中取出一个最小的值,并把此值保存到merge的输出文件中。这里和hbase中scan的算法非常相似,在分布式系统中多路归并排序真是当红小
生啊!

这里merge时不同的partition的key是不会比较的,只有相同的partition的keyvalue才会进行排序和合并。最后的输出文件类似下图。
如果用户定义了combiner,在merge的过程中也会进行combine,因为虽然第
四步中combine过但那只是部分输入的combine,在merge时仍然需要combine。这里有人问了,既然这里有combiner,为啥在
spill输出时还要combine纳,我认为是因为每次combine都会大大减少输出文件的大小,spill时就combine能减少一定的IO操
作。
 
在merge完后会把不同partition的信息保存进一个index文件以便之后reducer来拉自己部分的数据。
[java] view
plain
copy

 
  1. <span style=
  2. spillRec.putIndex(rec, parts);</span>

最后,我们再对mapper过程中的要点总结一下:
1.对map输出<key,value>的分区(partition)是在写入内存buf前就做好的了,方法是对key的hash。我们可以通过继承Partitioner类自己实现分区,将自己想要的数据分到同一个reducer中。
2.写入内存buf速度是非常快的,但spill过程会block写入。因此,对内存buf相关参数的调优是mapreduce调优的重点之一。
3.对数据的排序是基于MapOutKey排序的,因此,我们可以重载对应的方法实现customize的排序顺序
4.combine在spill和merge中都是进行。多次的combine会减少mapreduce中的IO操作,如果使用得当会很好的提高性能。但需要注意的是要深刻理解combine的意义,比如平均值就不适合用combine。

hadoop核心逻辑shuffle代码分析-map端 (转)的更多相关文章

  1. hadoop核心逻辑shuffle代码分析-map端

    首先要推荐一下:http://www.alidata.org/archives/1470 阿里的大牛在上面的文章中比较详细的介绍了shuffle过程中mapper和reduce的每个过程,强烈推荐先读 ...

  2. Hadoop基于Protocol Buffer的RPC实现代码分析-Server端

    http://yanbohappy.sinaapp.com/?p=110 最新版本的Hadoop代码中已经默认了Protocol buffer(以下简称PB,http://code.google.co ...

  3. Hadoop基于Protocol Buffer的RPC实现代码分析-Server端--转载

    原文地址:http://yanbohappy.sinaapp.com/?p=110 最新版本的Hadoop代码中已经默认了Protocol buffer(以下简称PB,http://code.goog ...

  4. 【hadoop代码笔记】Mapreduce shuffle过程之Map输出过程

    一.概要描述 shuffle是MapReduce的一个核心过程,因此没有在前面的MapReduce作业提交的过程中描述,而是单独拿出来比较详细的描述. 根据官方的流程图示如下: 本篇文章中只是想尝试从 ...

  5. Hadoop on Mac with IntelliJ IDEA - 10 陆喜恒. Hadoop实战(第2版)6.4.1(Shuffle和排序)Map端 内容整理

    下午对着源码看陆喜恒. Hadoop实战(第2版)6.4.1  (Shuffle和排序)Map端,发现与Hadoop 1.2.1的源码有些出入.下面作个简单的记录,方便起见,引用自书本的语句都用斜体表 ...

  6. Hadoop基础-Map端链式编程之MapReduce统计TopN示例

    Hadoop基础-Map端链式编程之MapReduce统计TopN示例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.项目需求 对“temp.txt”中的数据进行分析,统计出各 ...

  7. 项目中Map端内存占用的分析

      最近在项目中开展重构活动,对Map端内存尽量要省一些,当前的系统中Map端内存最高占用大概3G左右(设置成2G时会导致Java Heap OOM).虽然个人觉得占用不算多,但是显然这样的结果想要试 ...

  8. hadoop的压缩解压缩,reduce端join,map端join

    hadoop的压缩解压缩 hadoop对于常见的几种压缩算法对于我们的mapreduce都是内置支持,不需要我们关心.经过map之后,数据会产生输出经过shuffle,这个时候的shuffle过程特别 ...

  9. Hadoop2.4.1 MapReduce通过Map端shuffle(Combiner)完成数据去重

    package com.bank.service; import java.io.IOException; import org.apache.hadoop.conf.Configuration;im ...

随机推荐

  1. spring 3.0 @ResponseBody注解返回中文问号乱码解决办法

    前几天给公司做项目,很久没接触java项目的我,遇到了一个问题,就是我在利用异步到控制器中查询,然后返回jaon字符串到前台,字符串中包含中文,于是我直接用了@ResponseBody注解,来返回到前 ...

  2. 关于Json字符串"反序列化Error reading JObject from JsonReader. Current JsonReader item is not an object: StartArray. Path..."

    描述的很清楚就是说给它的不是一个对象,而是一个数组,所以他在建议你用JArray去解析,但是你明明就是给它的一个对象,并不是一个数组 这是我下意识的去把我的json字符串中的"[ ]&quo ...

  3. java如何实现python的urllib.quote(str,safe='/')

    最近需要将一些python代码转成java,遇到url编码 urllib.quote(str,safe='/') 但java中URLEncoder.encode(arg, Constant.UTF_8 ...

  4. 深入理解JavaScript系列(28):设计模式之工厂模式

    介绍 与创建型模式类似,工厂模式创建对象(视为工厂里的产品)时无需指定创建对象的具体类. 工厂模式定义一个用于创建对象的接口,这个接口由子类决定实例化哪一个类.该模式使一个类的实例化延迟到了子类.而子 ...

  5. [转]Newtonsoft.Json高级用法

    本文转自:http://www.cnblogs.com/yanweidie/p/4605212.html 手机端应用讲究速度快,体验好.刚好手头上的一个项目服务端接口有性能问题,需要进行优化.在接口多 ...

  6. link快捷方式

    ln -s 源文件 newfile   -软连接 ln 源文件 newfile  硬链接   源文件删除之后仍然可以使用

  7. CentOS7卸载OpenJDK,并安装Oracle官方JDK

    一.准备工具 yum源挂载已就绪:CentOS7本地yum源挂载. jdk-8u201-linux-x64.tar.gz,JDK安装包: 注意:在Linux配置JDK版本要求_jdk1.8+; 二.卸 ...

  8. echarts环形图点击旋转并高亮

    通过计算某个扇形区域的值占整个圆的百分比来得到这个扇形的角度,从而根据startAngle这个属性来设定图形的开始渲染的角度,使点击某个扇形时圆环旋转使之始终对准某个点. 期间考虑到某扇形区域太小点击 ...

  9. python数据类型(数字\字符串\列表)

    一.基本数据类型——数字 1.布尔型 bool型只有两个值:True和False 之所以将bool值归类为数字,是因为我们也习惯用1表示True,0表示False. (1)布尔值是False的各种情况 ...

  10. stark——分页、search、actions

    一.分页 1.引入自定义分页组件 在/stark目录下创建utils工具包目录,复制page.py到该目录下,文件中有之前自定义的分页组件. class Pagination(object): def ...