题目链接:http://poj.org/problem?id=2438

本文链接:http://www.cnblogs.com/Ash-ly/p/5452615.html

题意:

  有2*N个小朋友要坐在一张圆桌上吃饭,但是每两个小朋友之间存在一种关系,即敌人或者朋友,然后需要让你安排一个座位次序,使得相邻的两个小朋友都不会是敌人.假设每个人最多有N-1个敌人.如果没有输出"No solution!".

思路:

  如果按照题意直接建图,每个点表示一个小朋友,小朋友之间的敌对关系表示两个点之间有边.问题是求小朋友围着桌子的座次就是求图中的一个环,但是要求这个环不能包含所给出的每条边,所有没给出的边却是可以用的,也就是说本题实际上是在上面建的图的反图上求解一个环,使得该环包含所有点.包含所有点的环一定是一条哈密顿回路,所以题目就是求所给图的反图上的一条哈密顿回路.

  题目中给了一个特殊条件,就是一共有2*N个小朋友,但是每个人最多有N-1个敌人,也就是说,每个小朋友可以选择坐在身边的小朋友数大于n + 1,这就意味着在建立的反图中,每个点的度数大于N+1,由Dirac定理可知,此图一定存在哈密顿回路,所以答案不会出现"No solution!",即直接构造哈密顿回路就可以了.

代码:

 #include <iostream>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <stack>
#include <vector> using namespace std;
typedef long long LL;
const int maxN = ; inline void reverse(int arv[maxN + ], int s, int t){
int temp;
while(s < t){
temp = arv[s];
arv[s] = arv[t];
arv[t] = temp;
s++;
t--;
}
} void Hamilton(int ans[maxN + ], bool map[maxN + ][maxN + ], int n){
int s = , t;
int ansi = ;
int i, j;
int w;
int temp;
bool visit[maxN + ] = {false};
for(i = ; i <= n; i++) if(map[s][i]) break;
t = i;
visit[s] = visit[t] = true;
ans[] = s;
ans[] = t;
while(true){
while(true){
for(i = ; i <= n; i++){
if(map[t][i] && !visit[i]){
ans[ansi++] = i;
visit[i] = true;
t = i;
break;
}
}
if(i > n) break;
}
w = ansi - ;
i = ;
reverse(ans, i, w);
temp = s;
s = t;
t = temp;
while(true){
for(i = ; i <= n; i++){
if(map[t][i] && !visit[i]){
ans[ansi++] = i;
visit[i] = true;
t = i;
break;
}
}
if(i > n) break;
}
if(!map[s][t]){
for(i = ; i < ansi - ; i++)
if(map[ans[i]][t] && map[s][ans[i + ]])break;
w = ansi - ;
i++;
t = ans[i];
reverse(ans, i, w);
}
if(ansi == n) return;
for(j = ; j <= n; j++){
if(visit[j]) continue;
for(i = ; i < ansi - ; i++)if(map[ans[i]][j])break;
if(map[ans[i]][j]) break;
}
s = ans[i - ];
t = j;
reverse(ans, , i - );
reverse(ans, i, ansi - );
ans[ansi++] = j;
visit[j] = true;
}
} int main(){
//freopen("input.txt", "r", stdin);
int N, M;
while(~scanf("%d%d", &N, &M) && (N || M)){
N *= ;
bool map[maxN + ][maxN + ] = {};
int ans[maxN + ] = {};
int ansi = ;
for(int i = ; i <= N; i++)
for(int j = ; j <= N; j++)
i == j ? map[i][j] = map[j][i] = : map[i][j] = map[j][i] = ;
memset(ans, , sizeof(ans));
for(int i = ; i <= M; i++){
int u, v;
scanf("%d%d", &u, &v);
map[u][v] = map[v][u]= ;
}
Hamilton(ans, map, N);
for(int i = ; i < N; i++)
printf(i == ? "%d":" %d", ans[i]);
printf("\n"); }
return ;
}

POJ 2438 Children's Dining(哈密顿回路)的更多相关文章

  1. poj 2438 Children's Dining

    http://poj.org/problem?id=2438 题意: 有2*N个人要坐在一张圆桌上吃饭,有的人之间存在敌对关系,安排一个座位次序,使得敌对的人不相邻. 假设每个人最多有N-1个敌人.如 ...

  2. POJ 2438 Children’s Dining (哈密顿图模板题之巧妙建反图 )

    题目链接 Description Usually children in kindergarten like to quarrel with each other. This situation an ...

  3. POJ 2438 哈密顿回路

    Children's Dining Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4730   Accepted: 754 ...

  4. POJ 3083 -- Children of the Candy Corn(DFS+BFS)TLE

    POJ 3083 -- Children of the Candy Corn(DFS+BFS) 题意: 给定一个迷宫,S是起点,E是终点,#是墙不可走,.可以走 1)先输出左转优先时,从S到E的步数 ...

  5. POJ 2438 (哈密顿回路)

    分析: 2*n个小朋友,每个最多有n-1个"敌人",显然是存在哈密顿回路的. 预处理边,然后找哈密顿回路. code #include <iostream> #incl ...

  6. poj 3083 Children of the Candy Corn

    点击打开链接 Children of the Candy Corn Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8288 ...

  7. poj 3083 Children of the Candy Corn(DFS+BFS)

    做了1天,总是各种错误,很无语 最后还是参考大神的方法 题目:http://poj.org/problem?id=3083 题意:从s到e找分别按照左侧优先和右侧优先的最短路径,和实际的最短路径 DF ...

  8. POJ 3083 Children of the Candy Corn bfs和dfs

      Children of the Candy Corn Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8102   Acc ...

  9. POJ:3083 Children of the Candy Corn(bfs+dfs)

    http://poj.org/problem?id=3083 Description The cornfield maze is a popular Halloween treat. Visitors ...

随机推荐

  1. 【题解】HNOI2009无归岛

    这题真的是无语了,在哪个岛上根本就没有任何的用处……不过我是画了下图,感受到一定是仙人掌,并不会证.有谁会证的求解…… 如果当做仙人掌来做确实十分的简单.只要像没有上司的舞会一样树形dp就好了,遇到环 ...

  2. [ZJOI2005]沼泽鳄鱼 矩阵乘法

    ---题面--- 题解: 乍一看还是挺懵逼的.和HH去散步很像,思路也是类似的. 复制一段我在HH去散步的题解里面写的一段话吧: 考虑f[i][j]表示i和j是否右边相连,有为1,否则为0,那么f同时 ...

  3. [Leetcode] Best time to buy and sell stock iii 买卖股票的最佳时机

    Say you have an array for which the i th element is the price of a given stock on day i. Design an a ...

  4. http缓存知多少

    很久没有写博客了,趁现在也快过年,最近项目不是很忙,写一篇博客做为2018年的开始,重拾刚毕业的几年前写博客的冲动.http协议是每个程序猿应该需要知道的东西,不管是前端人员还是后端人员,以前在上家公 ...

  5. 自定义CheckBox

    自定义android的CheckBox按钮图形有两个步骤三种方式: 第一步: 新建Android XML文件,类型选Drawable,根结点选selector,放置在drawable文件夹内,指定各种 ...

  6. NET中IL理解(转)

    .NET CLR 和 Java VM 都是堆叠式虚拟机器(Stack-Based VM),也就是說,它們的指令集(Instruction Set)都是採用堆叠运算的方式:执行时的资料都是先放在堆叠中, ...

  7. python基础(3)_列表、元组、字典

    一.列表 定义:[ ] 内以逗号分隔,按照索引,存放各种数据类型,每个位置代表一个元素 特性: > 可存放多个值 > 可修改指定索引位置对应的值,可变 > 按照从左到右的顺序定义列表 ...

  8. bzoj 1901 线段树套平衡树+二分答案查询

    我们就建一颗线段树,线段树的每一个节点都是一颗平衡树,对于每个询问来说,我们就二分答案, 查询每个二分到的mid在这个区间里的rank,然后就行了 /************************* ...

  9. mongodb的数据库操作

    1.创建数据库 语法 MongoDB 创建数据库的语法格式如下: use DATABASE_NAME 如果数据库不存在,则创建数据库,否则切换到指定数据库. 1.创建数据库 > show dbs ...

  10. linux基础之nginx和nfs服务

      第一部分: 一.nginx服务安装nginx包(源码安装)1.先cd /etc/yum.repos.d目录下2.yum install epel-release -y(安装扩展包)3.yum in ...