题面

luogu

题解

树套树(树状数组套动态开点线段树)

静态使用树状数组求逆序对就不多说了

用线段树代替树状数组,外面套树状数组统计每个点逆序对数量



\(t1[i]\)为\(i\)前面有多少个数比\(a[i]\)大

\(t2[i]\)为\(i\)后面有多少个数比\(a[i]\)小

那么当删除\(a[i]\)时

\(ans\) \(=\) \(ans-(t1[i]+t2[i])+\)\(i\)前面有多少个数比\(a[i]\)大且已经被删了+\(i\)后面有多少个数比\(a[i]\)小且已经被删了

用树套树维护就好了

Code

#include<bits/stdc++.h>

#define LL long long
#define RG register using namespace std; inline int gi() {
RG int x = 0; RG char c = getchar(); bool f = 0;
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') c = getchar(), f = 1;
while (c >= '0' && c <= '9') x = x*10+c-'0', c = getchar();
return f ? -x : x;
}
const int N = 100010, M = 50010;
int t[N], n, m;
LL ans;
#define lowbit(x) (x&(-x));
inline int Tsum(int x) {
int s = 0;
while (x) s += t[x], x -= lowbit(x);
return s;
}
inline void Tadd(int x) {while (x <= n) t[x]++, x += lowbit(x);} struct node {
int ls, rs, v;
}st[6000010];
int root[N]; int a[N], t1[N], t2[N], id[N], cnt; void update(int &rt, int l, int r, int k) {
if (!rt) rt = ++cnt;
st[rt].v++;
if (l == r) return ;
int mid = (l + r) >> 1;
if (k <= mid) update(st[rt].ls, l, mid, k);
else update(st[rt].rs, mid+1, r, k);
} int sum(int rt, int l, int r, int L, int R) {
if (!rt) return 0;
if (L <= l && r <= R) return st[rt].v;
int mid = (l + r) >> 1, s = 0;
if (L <= mid) s = sum(st[rt].ls, l, mid, L, R);
if (R > mid) s += sum(st[rt].rs, mid+1, r, L, R);
return s;
} int query(int x, int l, int r) {
int s = 0;
if (l > r) return 0;
while (x) {
s += sum(root[x], 1, n, l, r);
x -= lowbit(x);
}
return s;
} void insert(int x, int k) {
while (x <= n) {
update(root[x], 1, n, k);
x += lowbit(x);
}
return ;
} int main() {
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi(), m = gi();
for (int i = 1; i <= n; i++) a[i] = gi(), id[a[i]] = i;
for (int i = 1; i <= n; i++) {
t1[i] = Tsum(n)-Tsum(a[i]);
ans += t1[i];
Tadd(a[i]);
}
memset(t, 0, sizeof(t));
for (int i = n; i; i--) {
t2[i] = Tsum(a[i]-1);
Tadd(a[i]);
}
while (m--) {
int x = gi(), w = id[x];
printf("%lld\n", ans);
ans -= (t1[w]+t2[w]);
ans += query(w-1, x+1, n);
ans += query(n, 1, x-1)-query(w, 1, x-1);
insert(w, x);
}
return 0;
}

洛谷 P3157 [CQOI2011]动态逆序对(树套树)的更多相关文章

  1. 洛谷 P3157 [CQOI2011]动态逆序对 解题报告

    P3157 [CQOI2011]动态逆序对 题目描述 对于序列\(A\),它的逆序对数定义为满足\(i<j\),且\(A_i>A_j\)的数对\((i,j)\)的个数.给\(1\)到\(n ...

  2. 洛谷 P3157 [CQOI2011]动态逆序对 | CDQ分治

    题目:https://www.luogu.org/problemnew/show/3157 题解: 1.对于静态的逆序对可以用树状数组做 2.我们为了方便可以把删除当成增加,可以化动为静 3.找到三维 ...

  3. 洛谷P3157 [CQOI2011]动态逆序对

    题目大意: 给定\(1\)到\(n\)的一个排列,按照给定顺序依次删除\(m\)个元素,计算每个元素删除之前整个序列的逆序对数量 基本套路:删边变加边 那么我们不就是求满足\(pos_i<pos ...

  4. P3157 [CQOI2011]动态逆序对(树状数组套线段树)

    P3157 [CQOI2011]动态逆序对 树状数组套线段树 静态逆序对咋做?树状数组(别管归并QWQ) 然鹅动态的咋做? 我们考虑每次删除一个元素. 减去的就是与这个元素有关的逆序对数,介个可以预处 ...

  5. P3157 [CQOI2011]动态逆序对

    P3157 [CQOI2011]动态逆序对 https://www.luogu.org/problemnew/show/P3157 题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai&g ...

  6. P3157 [CQOI2011]动态逆序对 (CDQ解决三维偏序问题)

    P3157 [CQOI2011]动态逆序对 题目描述 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任 ...

  7. BZOJ_3295_[Cqoi2011]动态逆序对_CDQ分治+树状数组

    BZOJ_3295_[Cqoi2011]动态逆序对_CDQ分治+树状数组 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一 ...

  8. [Luogu P3157][CQOI2011]动态逆序对 (树套树)

    题面 传送门:[CQOI2011]动态逆序对 Solution 一开始我看到pty巨神写这套题的时候,第一眼还以为是个SB题:这不直接开倒车线段树统计就完成了吗? 然后冷静思考了一分钟,猛然发现单纯的 ...

  9. [BZOJ3295][Cqoi2011]动态逆序对 CDQ分治&树套树

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j,且 ...

随机推荐

  1. PHP 5.5环境配置

    php5.5 + apache2.4 安装配置 1 2 3 4 5 6 7 分步阅读 php5.5 做了大量的更新,在与apache搭配的时候如何选择也很有讲究,这里我们以64位 php5.6 和 A ...

  2. 在CentOS7.5里安装FTP服务器

    安装了一台CentOS7.5,字符界面,为方便上传文件到这台机器上,拟采用FTP服务上传和下载文件,在CentOS上搭建vsftpd服务环境. 记录我的安装过程,供有需要的人参考. 一.系统环境 1. ...

  3. linux ssh使用深度解析(key登录详解)

    linux ssh使用深度解析(key登录详解) SSH全称Secure SHell,顾名思义就是非常安全的shell的意思,SSH协议是IETF(Internet Engineering Task ...

  4. Extend volumn in ubuntu 14.04

    运行环境: ubuntu 14.04, VMware12.5.7 1. VMware上点击 虚拟机->设置->硬盘(SCSI)->扩展选项,设置自己希望的ubuntu磁盘运行空间大小 ...

  5. Solidity oraclize 常用数据源

    1. 股票数据: https://blog.quandl.com/api-for-stock-data iextrading.com www.nowapi.com 中文 2. 外汇数据: https: ...

  6. swift基本运算

    swift运算有单目运算,双目运算和三元运算 1:赋值操作 iX = iY//iX is 8 元组赋值 let (iX, iY = (, ) // iX is 8, iY is 7 和c语言不同的是, ...

  7. Entity Framework 6.0 Tutorials(11):Download Sample Project

    Download Sample Project: Download a sample project for Entity Framework 6 Database-First model below ...

  8. 使用Monkey对APP进行随机测试

    Monkey测试简介 Monkey测试是Android平台自动化测试的一种手段,通过Monkey程序模拟用户触摸屏幕.滑动Trackball.按键等操作来对设备上的程序进行压力测试,检测程序多久的时间 ...

  9. C++ 中 dynamic_cast 浅析

    简述:dynamic_cast 操作符,将基类的指针或引用安全的转换为派生类的指针或引用.主要讲解,dynamic_cast操作符的原理.使用方式.编译器设置.返回值等相关知识. dynamic_ca ...

  10. What’s the Difference Between a Value Provider and Model Binder?

    ASP.NET MVC 3 introduced the ability to bind an incoming JSON request to an action method parameter, ...