Analytic functions are commonly used in data warehousing environments. In the list of analytic functions that follows, functions followed by an asterisk (*) allow the full syntax, including the windowing_clause.

分析函数一般用于数据仓库环境。以下是分析函数列表,其中带星号的表示支持窗口语句windowing_clause.

AVG *

CORR *

COVAR_POP *

COVAR_SAMP *

COUNT *

CUME_DIST

DENSE_RANK

FIRST

FIRST_VALUE *

LAG

LAST

LAST_VALUE *

LEAD

MAX *

MIN *

NTILE

PERCENT_RANK

PERCENTILE_CONT

PERCENTILE_DISC

RANK

RATIO_TO_REPORT

REGR_ (Linear Regression) Functions *

ROW_NUMBER

STDDEV *

STDDEV_POP *

STDDEV_SAMP *

SUM *

VAR_POP *

VAR_SAMP *

VARIANCE *

-------------------------------------------------------------------

1、AVG   为聚合函数用于求平均:

SELECT manager_id, last_name, hire_date, salary,
AVG(salary) OVER (PARTITION BY manager_id ORDER BY hire_date
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS c_mavg
FROM employees; MANAGER_ID LAST_NAME HIRE_DATE SALARY C_MAVG
---------- ------------------------- --------- ---------- ----------
100 Kochhar 21-SEP-89 17000 17000
100 De Haan 13-JAN-93 17000 15000
100 Raphaely 07-DEC-94 11000 11966.6667
100 Kaufling 01-MAY-95 7900 10633.3333
100 Hartstein 17-FEB-96 13000 9633.33333
100 Weiss 18-JUL-96 8000 11666.6667
100 Russell 01-OCT-96 14000 11833.3333

2、CORR 返回一对表达式的相关系数:

SELECT employee_id, job_id,
TO_CHAR((SYSDATE - hire_date) YEAR TO MONTH ) "Yrs-Mns", salary,
CORR(SYSDATE-hire_date, salary)
OVER(PARTITION BY job_id) AS "Correlation"
FROM employees
WHERE department_id in (50, 80)
ORDER BY job_id, employee_id; EMPLOYEE_ID JOB_ID Yrs-Mns SALARY Correlation
----------- ---------- ------- ---------- -----------
145 SA_MAN +08-07 14000 .912385598
146 SA_MAN +08-04 13500 .912385598
147 SA_MAN +08-02 12000 .912385598
148 SA_MAN +05-07 11000 .912385598
149 SA_MAN +05-03 10500 .912385598
150 SA_REP +08-03 10000 .80436755
151 SA_REP +08-02 9500 .80436755
152 SA_REP +07-09 9000 .80436755
153 SA_REP +07-01 8000 .80436755
154 SA_REP +06-05 7500 .80436755
155 SA_REP +05-06 7000 .80436755

3、COVAR_POP  返回一对表达式的总体协方差;

4、COVAR_SAMP 返回一对表达式的样本协方差;

5、COUNT 返回总行数:(每行对应的数据窗口是之前行幅度值不超过50,之后行幅度值不超过150)

SELECT last_name, salary,
COUNT(*) OVER (ORDER BY salary RANGE BETWEEN 50 PRECEDING
AND 150 FOLLOWING) AS mov_count FROM employees; LAST_NAME SALARY MOV_COUNT
------------------------- ---------- ----------
Olson 2100 3
Markle 2200 2
Philtanker 2200 2
Landry 2400 8
Gee 2400 8
Colmenares 2500 10
Patel 2500 10
. . .

6、dense_rank 返回排名,用于TOPN查询:

查询假设薪资15500 、佣金5%的员工在employees表中排名

SELECT DENSE_RANK(15500, .05) WITHIN GROUP
(ORDER BY salary DESC, commission_pct) "Dense Rank"
FROM employees; Dense Rank
-------------------
3
SELECT d.department_name, e.last_name, e.salary, DENSE_RANK()
OVER (PARTITION BY e.department_id ORDER BY e.salary) AS drank
FROM employees e, departments d
WHERE e.department_id = d.department_id
AND d.department_id IN ('30', '40'); DEPARTMENT_NAME LAST_NAME SALARY DRANK
----------------------- ------------------ ---------- ----------
Purchasing Colmenares 2500 1
Purchasing Himuro 2600 2
Purchasing Tobias 2800 3
Purchasing Baida 2900 4
Purchasing Khoo 3100 5
Purchasing Raphaely 11000 6
Human Resources Marvis 6500 1

7、first 当所查字段不是排序字段时返回分组范围内最大、最小值:

SELECT last_name, department_id, salary,
MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct)
OVER (PARTITION BY department_id) "Worst",
MAX(salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct)
OVER (PARTITION BY department_id) "Best"
FROM employees
ORDER BY department_id, salary; LAST_NAME DEPARTMENT_ID SALARY Worst Best
------------------- ------------- ---------- ---------- ----------
Whalen 10 4400 4400 4400
Fay 20 6000 6000 13000
Hartstein 20 13000 6000 13000
. . .
Gietz 110 8300 8300 12000
Higgins 110 12000 8300 12000
Grant 7000 7000 7000
SELECT last_name, department_id, salary,
MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct)
OVER (PARTITION BY department_id) "Worst",
MAX(salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct)
OVER (PARTITION BY department_id) "Best"
FROM employees
ORDER BY department_id, salary;

8、fist_value 返回一组有序值中第一个值

SELECT department_id, last_name, salary, FIRST_VALUE(last_name)
OVER (ORDER BY salary ASC ROWS UNBOUNDED PRECEDING) AS lowest_sal
FROM (SELECT * FROM employees WHERE department_id = 90
ORDER BY employee_id); DEPARTMENT_ID LAST_NAME SALARY LOWEST_SAL
------------- ------------- ---------- -------------------------
90 Kochhar 17000 Kochhar
90 De Haan 17000 Kochhar
90 King 24000 Kochhar

9、lag与lead函数是跟偏移量相关的两个分析函数,通过这两个函数我们可以取到当前行列的偏移N行列的值 lag可以看着是正的向上的偏移 lead可以认为负的向下的偏移

SELECT last_name, hire_date, salary,
LAG(salary, 1, 0) OVER (ORDER BY hire_date) AS prev_sal
FROM employees
WHERE job_id = 'PU_CLERK';
select deptno,
sal a,
lag(sal, 1, null) over(partition by deptno order by deptno) b
from scott.emp
SELECT last_name, hire_date,
LEAD(hire_date, 1) OVER (ORDER BY hire_date) AS "NextHired"
FROM employees WHERE department_id = 30;

10、min/max 分别用于返回分组最小值/最大值:

SELECT manager_id, last_name, salary
FROM (SELECT manager_id, last_name, salary,
MAX(salary) OVER (PARTITION BY manager_id) AS rmax_sal
FROM employees) WHERE salary = rmax_sal;
SELECT manager_id, last_name, hire_date, salary,
MIN(salary) OVER(PARTITION BY manager_id ORDER BY hire_date
RANGE UNBOUNDED PRECEDING) AS p_cmin
FROM employees;

11、rank 类似于dense_rank 区别在于其排名数字不连续

SELECT RANK(15500) WITHIN GROUP
(ORDER BY salary DESC) "Rank of 15500"
FROM employees;
SELECT department_id, last_name, salary, commission_pct,
RANK() OVER (PARTITION BY department_id
ORDER BY salary DESC, commission_pct) "Rank"
FROM employees WHERE department_id = 80;

12、row_number 和rownum差不多,功能更强一点(可以在各个分组内从1开始排序)

SELECT department_id, last_name, employee_id, ROW_NUMBER()
OVER (PARTITION BY department_id ORDER BY employee_id) AS emp_id
FROM employees;

13、
RATIO_TO_REPORT 用来计算当前记录的指标expr占开窗函数over中包含记录的所有同一指标的百分比. 这里如果开窗函数的统计结果为null或者为0,就是说占用比率的被除数为0或者为null, 则得到的结果也为0

SELECT last_name, salary, RATIO_TO_REPORT(salary) OVER () AS rr
FROM employees
WHERE job_id = 'PU_CLERK';

14、SUM

SELECT manager_id, last_name, salary,
SUM(salary) OVER (PARTITION BY manager_id ORDER BY salary
RANGE UNBOUNDED PRECEDING) l_csum
FROM employees;

to be continue...

------------------------

Dylan    Presents.

------------------------------------

Dylan   Presents.

Oracle 分析函数详解(Analytic Functions)--示例部分的更多相关文章

  1. 常用Oracle分析函数详解 [http://www.cnblogs.com/benio/archive/2011/06/01/2066106.html]

      学习步骤:1. 拥有Oracle EBS demo 环境 或者 PROD 环境2. copy以下代码进 PL/SQL3. 配合解释分析结果4. 如果网页有点乱请复制到TXT中查看 /*假设一个经理 ...

  2. 常用Oracle分析函数详解

    学习步骤:1. 拥有Oracle EBS demo 环境 或者 PROD 环境2. copy以下代码进 PL/SQL3. 配合解释分析结果4. 如果网页有点乱请复制到TXT中查看 /*假设一个经理代表 ...

  3. 问题:Oracle出发器;结果:1、Oracle触发器详解,2、Oracle触发器示例

    ORACLE触发器详解 本篇主要内容如下: 8.1 触发器类型 8.1.1 DML触发器 8.1.2 替代触发器 8.1.3 系统触发器 8.2 创建触发器 8.2.1 触发器触发次序 8.2.2 创 ...

  4. oracle 数据类型详解---日期型(转载)

    oracle 数据类型详解---日期型 oracle数据类型看起来非常简单,但用起来会发现有许多知识点,本文是我对ORACLE日期数据类型的一些整理,都是开发入门资料,与大家分享: 注:由于INTER ...

  5. oracle rowid 详解

    oracle rowid详解 今天是2013-09-15,存储在数据库中的每一行数据都有一个地址,oracle使用rowid数据类型在存储地址.rowid有如下类别: 1)physical rowid ...

  6. Oracle索引详解

    Oracle索引详解(二) --索引分类   Oracle 提供了大量索引选项.知道在给定条件下使用哪个选项对于一个程序的性能来说非常重要.一个错误的选择可能会引发死锁,并导致数据库性能急剧下降或进程 ...

  7. Oracle内存详解之 Library cache 库缓冲

    Oracle内存详解之 Library cache 库缓冲 2017年11月09日 11:38:39 阅读数:410更多 个人分类: 体系结构 Library cache是Shared pool的一部 ...

  8. Oracle date 详解

    oracle 数据类型详解---日期型 oracle数据类型看起来非常简单,但用起来会发现有许多知识点,本文是我对ORACLE日期数据类型的一些整理,都是开发入门资料,与大家分享:注:由于INTERV ...

  9. (转)oracle视图详解

    Oracle视图详解   一. 视图的定义 视图(view),也称虚表, 不占用物理空间,这个也是相对概念,因为视图本身的定义语句还是要存储在数据字典里的.视图只有逻辑定义.每次使用的时候,只是重新执 ...

  10. WebService核心文件【server-config.wsdd】详解及调用示例

    WebService核心文件[server-config.wsdd]详解及调用示例 作者:Vashon 一.准备工作 导入需要的jar包: 二.配置web.xml 在web工程的web.xml中添加如 ...

随机推荐

  1. GraduationProject

    GraduationProject 为了毕设寻找的一些springboot项目资源 后台项目: FEBS-Shiro: https://github.com/wuyouzhuguli/FEBS-Shi ...

  2. [转帖]【linux命令学习】— sar 命令学习

    https://blog.csdn.net/u013332124/article/details/101075521 一.命令使用介绍 sar命令全称 System Activity Report,它 ...

  3. PG数据库的离线rpm包下载

    PG数据库的离线rpm包下载 背景 周末时间研究数据库的版本. 发现PostgreSQL数据库的版本号已经变成了一年一个大版本. 兼容起来其实成本很高. 想着能够在能够上网的机器上面弄好多套数据库. ...

  4. [转帖]prometheus node-exporter 全部指标说明

    https://www.cnblogs.com/276815076/p/16383615.html Basic CPU / Mem / Disk Info Basic CPU / Mem / Disk ...

  5. [转帖]TiUP Cluster 命令合集

    https://docs.pingcap.com/zh/tidb/stable/tiup-component-cluster TiUP Cluster 是 TiUP 提供的使用 Golang 编写的集 ...

  6. [转帖]华为FusionSphere虚拟化解决方案介绍

    https://huaweicloud.csdn.net/63566589d3efff3090b5d243.html?spm=1001.2101.3001.6650.2&utm_medium= ...

  7. [转帖]python库Paramiko

    https://zhuanlan.zhihu.com/p/456447145 测试过程中经常会遇到需要将本地的文件上传到远程服务器上,或者需要将服务器上的文件拉到本地进行操作,以前安静经常会用到xft ...

  8. [转帖]docker编译speccpu2017

    实验步骤: 1.下载docker和speccpu2017 2.docker下载镜像,创建容器 3.将下载的宿主机speccpu2017拷贝到docker创建的容器中(docker cp) 4.在doc ...

  9. 一个简单的监控java进程获取日志的办法

    公司里面一个长时间运行的环境会出现问题, 这边简单写了一个脚本自动获取日志信息 脚本如下 注意 我的path 其实就是复用的 我们应用里面的jdk  剩下的就非常简单了. 每个日志都自动打包 并且移除 ...

  10. 物联网浏览器(IoTBrowser)-顶尖OS2电子秤协议实现

    本教程基于  物联网浏览器(IoTBrowser)-Web串口自定义开发 ,详细的过程可以翻看之前的文章. 本篇以实现顶尖OS2系列电子秤协议对接,并集成到IoTBrowser平台.由于没有找到OS2 ...