Analytic functions are commonly used in data warehousing environments. In the list of analytic functions that follows, functions followed by an asterisk (*) allow the full syntax, including the windowing_clause.

分析函数一般用于数据仓库环境。以下是分析函数列表,其中带星号的表示支持窗口语句windowing_clause.

AVG *

CORR *

COVAR_POP *

COVAR_SAMP *

COUNT *

CUME_DIST

DENSE_RANK

FIRST

FIRST_VALUE *

LAG

LAST

LAST_VALUE *

LEAD

MAX *

MIN *

NTILE

PERCENT_RANK

PERCENTILE_CONT

PERCENTILE_DISC

RANK

RATIO_TO_REPORT

REGR_ (Linear Regression) Functions *

ROW_NUMBER

STDDEV *

STDDEV_POP *

STDDEV_SAMP *

SUM *

VAR_POP *

VAR_SAMP *

VARIANCE *

-------------------------------------------------------------------

1、AVG   为聚合函数用于求平均:

SELECT manager_id, last_name, hire_date, salary,
AVG(salary) OVER (PARTITION BY manager_id ORDER BY hire_date
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS c_mavg
FROM employees; MANAGER_ID LAST_NAME HIRE_DATE SALARY C_MAVG
---------- ------------------------- --------- ---------- ----------
100 Kochhar 21-SEP-89 17000 17000
100 De Haan 13-JAN-93 17000 15000
100 Raphaely 07-DEC-94 11000 11966.6667
100 Kaufling 01-MAY-95 7900 10633.3333
100 Hartstein 17-FEB-96 13000 9633.33333
100 Weiss 18-JUL-96 8000 11666.6667
100 Russell 01-OCT-96 14000 11833.3333

2、CORR 返回一对表达式的相关系数:

SELECT employee_id, job_id,
TO_CHAR((SYSDATE - hire_date) YEAR TO MONTH ) "Yrs-Mns", salary,
CORR(SYSDATE-hire_date, salary)
OVER(PARTITION BY job_id) AS "Correlation"
FROM employees
WHERE department_id in (50, 80)
ORDER BY job_id, employee_id; EMPLOYEE_ID JOB_ID Yrs-Mns SALARY Correlation
----------- ---------- ------- ---------- -----------
145 SA_MAN +08-07 14000 .912385598
146 SA_MAN +08-04 13500 .912385598
147 SA_MAN +08-02 12000 .912385598
148 SA_MAN +05-07 11000 .912385598
149 SA_MAN +05-03 10500 .912385598
150 SA_REP +08-03 10000 .80436755
151 SA_REP +08-02 9500 .80436755
152 SA_REP +07-09 9000 .80436755
153 SA_REP +07-01 8000 .80436755
154 SA_REP +06-05 7500 .80436755
155 SA_REP +05-06 7000 .80436755

3、COVAR_POP  返回一对表达式的总体协方差;

4、COVAR_SAMP 返回一对表达式的样本协方差;

5、COUNT 返回总行数:(每行对应的数据窗口是之前行幅度值不超过50,之后行幅度值不超过150)

SELECT last_name, salary,
COUNT(*) OVER (ORDER BY salary RANGE BETWEEN 50 PRECEDING
AND 150 FOLLOWING) AS mov_count FROM employees; LAST_NAME SALARY MOV_COUNT
------------------------- ---------- ----------
Olson 2100 3
Markle 2200 2
Philtanker 2200 2
Landry 2400 8
Gee 2400 8
Colmenares 2500 10
Patel 2500 10
. . .

6、dense_rank 返回排名,用于TOPN查询:

查询假设薪资15500 、佣金5%的员工在employees表中排名

SELECT DENSE_RANK(15500, .05) WITHIN GROUP
(ORDER BY salary DESC, commission_pct) "Dense Rank"
FROM employees; Dense Rank
-------------------
3
SELECT d.department_name, e.last_name, e.salary, DENSE_RANK()
OVER (PARTITION BY e.department_id ORDER BY e.salary) AS drank
FROM employees e, departments d
WHERE e.department_id = d.department_id
AND d.department_id IN ('30', '40'); DEPARTMENT_NAME LAST_NAME SALARY DRANK
----------------------- ------------------ ---------- ----------
Purchasing Colmenares 2500 1
Purchasing Himuro 2600 2
Purchasing Tobias 2800 3
Purchasing Baida 2900 4
Purchasing Khoo 3100 5
Purchasing Raphaely 11000 6
Human Resources Marvis 6500 1

7、first 当所查字段不是排序字段时返回分组范围内最大、最小值:

SELECT last_name, department_id, salary,
MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct)
OVER (PARTITION BY department_id) "Worst",
MAX(salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct)
OVER (PARTITION BY department_id) "Best"
FROM employees
ORDER BY department_id, salary; LAST_NAME DEPARTMENT_ID SALARY Worst Best
------------------- ------------- ---------- ---------- ----------
Whalen 10 4400 4400 4400
Fay 20 6000 6000 13000
Hartstein 20 13000 6000 13000
. . .
Gietz 110 8300 8300 12000
Higgins 110 12000 8300 12000
Grant 7000 7000 7000
SELECT last_name, department_id, salary,
MIN(salary) KEEP (DENSE_RANK FIRST ORDER BY commission_pct)
OVER (PARTITION BY department_id) "Worst",
MAX(salary) KEEP (DENSE_RANK LAST ORDER BY commission_pct)
OVER (PARTITION BY department_id) "Best"
FROM employees
ORDER BY department_id, salary;

8、fist_value 返回一组有序值中第一个值

SELECT department_id, last_name, salary, FIRST_VALUE(last_name)
OVER (ORDER BY salary ASC ROWS UNBOUNDED PRECEDING) AS lowest_sal
FROM (SELECT * FROM employees WHERE department_id = 90
ORDER BY employee_id); DEPARTMENT_ID LAST_NAME SALARY LOWEST_SAL
------------- ------------- ---------- -------------------------
90 Kochhar 17000 Kochhar
90 De Haan 17000 Kochhar
90 King 24000 Kochhar

9、lag与lead函数是跟偏移量相关的两个分析函数,通过这两个函数我们可以取到当前行列的偏移N行列的值 lag可以看着是正的向上的偏移 lead可以认为负的向下的偏移

SELECT last_name, hire_date, salary,
LAG(salary, 1, 0) OVER (ORDER BY hire_date) AS prev_sal
FROM employees
WHERE job_id = 'PU_CLERK';
select deptno,
sal a,
lag(sal, 1, null) over(partition by deptno order by deptno) b
from scott.emp
SELECT last_name, hire_date,
LEAD(hire_date, 1) OVER (ORDER BY hire_date) AS "NextHired"
FROM employees WHERE department_id = 30;

10、min/max 分别用于返回分组最小值/最大值:

SELECT manager_id, last_name, salary
FROM (SELECT manager_id, last_name, salary,
MAX(salary) OVER (PARTITION BY manager_id) AS rmax_sal
FROM employees) WHERE salary = rmax_sal;
SELECT manager_id, last_name, hire_date, salary,
MIN(salary) OVER(PARTITION BY manager_id ORDER BY hire_date
RANGE UNBOUNDED PRECEDING) AS p_cmin
FROM employees;

11、rank 类似于dense_rank 区别在于其排名数字不连续

SELECT RANK(15500) WITHIN GROUP
(ORDER BY salary DESC) "Rank of 15500"
FROM employees;
SELECT department_id, last_name, salary, commission_pct,
RANK() OVER (PARTITION BY department_id
ORDER BY salary DESC, commission_pct) "Rank"
FROM employees WHERE department_id = 80;

12、row_number 和rownum差不多,功能更强一点(可以在各个分组内从1开始排序)

SELECT department_id, last_name, employee_id, ROW_NUMBER()
OVER (PARTITION BY department_id ORDER BY employee_id) AS emp_id
FROM employees;

13、
RATIO_TO_REPORT 用来计算当前记录的指标expr占开窗函数over中包含记录的所有同一指标的百分比. 这里如果开窗函数的统计结果为null或者为0,就是说占用比率的被除数为0或者为null, 则得到的结果也为0

SELECT last_name, salary, RATIO_TO_REPORT(salary) OVER () AS rr
FROM employees
WHERE job_id = 'PU_CLERK';

14、SUM

SELECT manager_id, last_name, salary,
SUM(salary) OVER (PARTITION BY manager_id ORDER BY salary
RANGE UNBOUNDED PRECEDING) l_csum
FROM employees;

to be continue...

------------------------

Dylan    Presents.

------------------------------------

Dylan   Presents.

Oracle 分析函数详解(Analytic Functions)--示例部分的更多相关文章

  1. 常用Oracle分析函数详解 [http://www.cnblogs.com/benio/archive/2011/06/01/2066106.html]

      学习步骤:1. 拥有Oracle EBS demo 环境 或者 PROD 环境2. copy以下代码进 PL/SQL3. 配合解释分析结果4. 如果网页有点乱请复制到TXT中查看 /*假设一个经理 ...

  2. 常用Oracle分析函数详解

    学习步骤:1. 拥有Oracle EBS demo 环境 或者 PROD 环境2. copy以下代码进 PL/SQL3. 配合解释分析结果4. 如果网页有点乱请复制到TXT中查看 /*假设一个经理代表 ...

  3. 问题:Oracle出发器;结果:1、Oracle触发器详解,2、Oracle触发器示例

    ORACLE触发器详解 本篇主要内容如下: 8.1 触发器类型 8.1.1 DML触发器 8.1.2 替代触发器 8.1.3 系统触发器 8.2 创建触发器 8.2.1 触发器触发次序 8.2.2 创 ...

  4. oracle 数据类型详解---日期型(转载)

    oracle 数据类型详解---日期型 oracle数据类型看起来非常简单,但用起来会发现有许多知识点,本文是我对ORACLE日期数据类型的一些整理,都是开发入门资料,与大家分享: 注:由于INTER ...

  5. oracle rowid 详解

    oracle rowid详解 今天是2013-09-15,存储在数据库中的每一行数据都有一个地址,oracle使用rowid数据类型在存储地址.rowid有如下类别: 1)physical rowid ...

  6. Oracle索引详解

    Oracle索引详解(二) --索引分类   Oracle 提供了大量索引选项.知道在给定条件下使用哪个选项对于一个程序的性能来说非常重要.一个错误的选择可能会引发死锁,并导致数据库性能急剧下降或进程 ...

  7. Oracle内存详解之 Library cache 库缓冲

    Oracle内存详解之 Library cache 库缓冲 2017年11月09日 11:38:39 阅读数:410更多 个人分类: 体系结构 Library cache是Shared pool的一部 ...

  8. Oracle date 详解

    oracle 数据类型详解---日期型 oracle数据类型看起来非常简单,但用起来会发现有许多知识点,本文是我对ORACLE日期数据类型的一些整理,都是开发入门资料,与大家分享:注:由于INTERV ...

  9. (转)oracle视图详解

    Oracle视图详解   一. 视图的定义 视图(view),也称虚表, 不占用物理空间,这个也是相对概念,因为视图本身的定义语句还是要存储在数据字典里的.视图只有逻辑定义.每次使用的时候,只是重新执 ...

  10. WebService核心文件【server-config.wsdd】详解及调用示例

    WebService核心文件[server-config.wsdd]详解及调用示例 作者:Vashon 一.准备工作 导入需要的jar包: 二.配置web.xml 在web工程的web.xml中添加如 ...

随机推荐

  1. Springboot开发的应用为什么这么占用内存

    Springboot开发的应用为什么这么占用内存 Java的原罪 Java 程序员比 c或者是c++程序员相比轻松了很多. 不要管理繁杂的内存申请与释放,也不用担心因为忘记释放内存导致很严重的内存泄漏 ...

  2. [转帖]Debian开启SSH

    一.Debian开启SSH 参考链接: https://blog.csdn.net/zzpzheng/article/details/71170572 https://help.aliyun.com/ ...

  3. [转帖]如何对minio进行性能测试和分析

    https://developer.aliyun.com/article/1006775   环境详情 server(组成集群,ec为12:4) ip hosts 硬盘 storage01 172.1 ...

  4. [转帖]手摸手搭建简单的jmeter+influxdb+grafana性能监控平台

    我安装的机器是阿里云的centos8机器,其他的系统暂未验证 1.安装influxdb influxdb 下载地址https://portal.influxdata.com/downloads/,也可 ...

  5. 【转帖】MySQL 8.0 hash join有重大缺陷?

    我并不这么看. 友情提醒:本文建议在PC端阅读. 徐春阳老师发文爆MySQL 8.0 hash join有重大缺陷. 文章核心观点如下:多表(比如3个个表)join时,只会简单的把表数据量小的放在前面 ...

  6. 【转帖】用pycharm开发django项目示例

    https://www.cnblogs.com/kylinlin/p/5184592.html pycharm开发django工程(一) 在pycharm(企业版)中新建Django工程,注意使用虚拟 ...

  7. [转帖]013 Linux 搞懂「文件所属者更改及权限的赋予」从未如此简单 (chmod、chgrp、chown)

    https://my.oschina.net/u/3113381/blog/5435014   01 一图详解「ls -l」 02 两种符号区分表示文件和目录 -(横线) # 表示非目录文件 d # ...

  8. OpenPower机器上面搭建RabbitMQ 以及简单进行用户配置的方法

    OpenPower机器上面搭建RabbitMQ 以及简单进行用户配置的方法 公司有一台性能比较好的power机器. 同事要求安装rabbitmq 今天尝试进行了一下处理 公司里面有网络有相应的源 性能 ...

  9. postman中js脚本简单用法

    1.获取接口相应结果 var jsonData = pm.response.json() 2.设置环境变量 pm.environment.set("variable_key", & ...

  10. 全球 IPv4 耗尽,下个月开始收费!

    哈喽大家好,我是咸鱼 IPv4(Internet Protocol version 4)是互联网上使用最广泛的网络层协议之一,于1981年在 RFC 791 中发布,它定义了 32 位的IP地址结构和 ...