利用神经网络对脑电图(EEG)降噪------开源的、低成本、低功耗微处理器神经网络模型解决方案
具体的软硬件实现点击 http://mcu-ai.com/ MCU-AI技术网页_MCU-AI人工智能
这个示例展示了如何使用EEGdenoiseNet基准数据集[1]和深度学习回归去除脑电图(EEG)信号中的眼电图(EOG)噪声。EEGdenoiseNet数据集包含4514个干净的EEG片段和3400个眼部伪迹片段,这些片段可以用来合成带有真实干净EEG的噪声EEG片段
这个示例使用干净和受EOG污染的EEG信号来训练一个长短期记忆(LSTM)模型以去除EOG伪迹。首先,将在原始输入信号上训练模型。然后,引入短时傅里叶变换(STFT)层,使模型在原始输入上提取时频特征进行训练。逆STFT层从去噪的STFT重构结果。使用时频特征特别是在信噪比(SNR)较低时可以提高性能。
EEGdeniseNet数据集包含4514个干净的EEG片段和3400个EOG片段,可用于生成三个数据集,用于训练、验证和测试深度学习模型。所有信号段的采样率为256Hz。实例为MATLAB语言。
% Download the data
datasetZipFile = matlab.internal.examples.downloadSupportFile("SPT","data/EEGEOGDenoisingData.zip");
datasetFolder = fullfile(fileparts(datasetZipFile),"EEG_EOG_Denoising_Dataset");
if ~exist(datasetFolder,"dir")
unzip(datasetZipFile,fileparts(datasetZipFile));
end
下载数据后,datasetFolder中的位置包含两个MAT文件:
EEG_all_epochs.mat 干净EEG数据
EOG_all_epochs.mat (EOG)数据
将干净的EEG和EOG信号相结合,生成具有不同信噪比(SNR)的有噪声EEG数据与干净的EEG数据构成训练数据,并且分成训练、验证和测试数据集。
绘制有噪声EEG数据与干净的EEG数据

显然,传统的任何算法很难将EEG数据从噪声中滤出来。
定义神经网络结构,之所以选择长短期记忆(LSTM)架构,是因为它能够从时间序列中学习特征。
numFeatures = 1;
numHiddenUnits = 100;
layers = [
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits)
dropoutLayer(0.2)
fullyConnectedLayer(numFeatures)
];
设置训练参数
maxEpochs = 5;
miniBatchSize = 150;
options = trainingOptions("adam", ...
Metrics="rmse", ...
MaxEpochs=maxEpochs, ...
MiniBatchSize=miniBatchSize, ...
InitialLearnRate=0.005, ...
GradientThreshold=1, ...
Plots="training-progress", ...
Shuffle="every-epoch", ...
Verbose=false, ...
ValidationData=ds_Validate_T, ...
ValidationFrequency=100, ...
OutputNetwork="best-validation-loss");

模型执行的效果

提高深度学习模型性能的常用方法是使用输入信号数据的特征进行训练。这些特征提供了输入数据的表示,这使得网络更容易学习信号的最重要方面。
选择窗口长度为64个样本、重叠长度为63个样本的短时傅立叶变换(STFT)。这种转换将有效地创建33个复杂特征,每个特征的长度为449个样本。
winLength = 64;
overlapLength = 63;
data = preview(ds_Train_T);
plotSTFT(data,winLength,overlapLength)

定义神经网络
minLen=512; % signal length
numFeatures=66; % number of features
win=rectwin(winLength); % analysis window
layers = [
sequenceInputLayer(1,MinLength=minLen)
stftLayer(Window=win,OverlapLength=overlapLength,transform="realimag")
lstmLayer(numHiddenUnits)
dropoutLayer(0.2)
fullyConnectedLayer(numFeatures)
istftLayer(Window=win,OverlapLength=overlapLength)
];
训练网络
if trainingFlag == "Train networks"
stftNet = trainnet(ds_Train_T,layers,"mse",options);end
网络性能


利用神经网络对脑电图(EEG)降噪------开源的、低成本、低功耗微处理器神经网络模型解决方案的更多相关文章
- 利用神经网络算法的C#手写数字识别(二)
利用神经网络算法的C#手写数字识别(二) 本篇主要内容: 让项目编译通过,并能打开图片进行识别. 1. 从上一篇<利用神经网络算法的C#手写数字识别>中的源码地址下载源码与资源, ...
- 利用神经网络算法的C#手写数字识别(一)
利用神经网络算法的C#手写数字识别 转发来自云加社区,用于学习机器学习与神经网络 欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwri ...
- 利用Tensorflow实现卷积神经网络模型
首先看一下卷积神经网络模型,如下图: 卷积神经网络(CNN)由输入层.卷积层.激活函数.池化层.全连接层组成,即INPUT-CONV-RELU-POOL-FC池化层:为了减少运算量和数据维度而设置的一 ...
- 利用Tensorflow实现神经网络模型
首先看一下神经网络模型,一个比较简单的两层神经. 代码如下: # 定义参数 n_hidden_1 = 256 #第一层神经元 n_hidden_2 = 128 #第二层神经元 n_input = 78 ...
- 【TensorFlow/简单网络】MNIST数据集-softmax、全连接神经网络,卷积神经网络模型
初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构 ...
- SAP开源的持续集成-持续交付的解决方案
SAP开源的持续集成/持续交付的解决方案: (1) 一个叫做piper的github项目,包含一个针对Jenkins的共享库和一个方便大家快速搭建CI/CD环境的Docker镜像: (2) 一套SAP ...
- 利用神经网络算法的C#手写数字识别
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwritten_character_recognition.zip 下载源码 - 70. ...
- 利用神经网络进行网络流量识别——特征提取的方法是(1)直接原始报文提取前24字节,24个报文组成596像素图像CNN识别;或者直接去掉header后payload的前1024字节(2)传输报文的大小分布特征;也有加入时序结合LSTM后的CNN综合模型
国外的文献汇总: <Network Traffic Classification via Neural Networks>使用的是全连接网络,传统机器学习特征工程的技术.top10特征如下 ...
- 如何利用神经网络和Python生成指定模式的密码
今天给大家介绍的是Github上一个名叫PyMLProjects的项目,这个项目的目的是为了训练AI来学习人类构造密码的模式,然后我们就可以用AI来生成大量同一模式或种类的密码了.这种方法也许可以用来 ...
- Fragment利用ViewPager实现左右滑动--第三方开源--SlidingTabLayout和SlidingTabStrip实现
MainActivity: package com.zzw.fragmentteb; import java.util.ArrayList; import android.graphics.Color ...
随机推荐
- AXI自定义IP之UART调试
AXI自定义IP之UART调试 1.实验原理 前面的自定义IP中已经将AXI总线的大部分接口设置都一一验证了.基本掌握了关键接受寄存器slv_reg和发送寄存器data_reg_out,可以基本实现简 ...
- verilog基本语法之always和assign
always和assign的作用 一.语法定义 assign,连续赋值.always,敏感赋值.连续赋值,就是无条件全等.敏感赋值,就是有条件相等.assign的对象是wire,always的对象是r ...
- 【Java面试题】SpringMVC
九.SpringMVC 63)SpringMVC 的流程 a.用户向服务器发送请求,请求被 SpringMVC 前端控制器 DispatchServlet 捕获: b.DispatcherServle ...
- 2024年:如何根据项目具体情况选择合适的CSS技术栈
2024年:如何根据项目具体情况选择合适的CSS技术栈 (请注意,这是一篇主观且充满个人技术偏好的文章) 方案一: antd/element ui/类似竞品 适合情形: 项目没有设计师 or 大部分人 ...
- .NET 8使用日志功能以及自定义日志提供程序
.NET 8使用日志功能以及自定义日志提供程序 日志级别 下表列出了 LogLevel 值.方便的 Log{LogLevel} 扩展方法以及建议的用法: 展开表 LogLevel "值&qu ...
- 看你能解锁哪些新身份?OpenHarmony大使、MVP、金码达人在线申报
- 重磅官宣,OpenHarmony开发者大会来了!
开放原子开源基金会OpenHarmony开发者大会2023将于4月19日在北京召开. 春风送暖万物新,OpenHarmony正当时.诚邀您参加本届大会,聆听行业大咖分享操作系统和开源的最新前沿研究成 ...
- C# 窗口停靠隐藏类
引用:https://www.cnblogs.com/lidj/archive/2012/07/06/2579923.html 最近修改了一下.可以更方便的用在各个窗体上了 代码也简洁很多.直接引用一 ...
- springboot多模块项目启动经历
springboot多模块使用 @ 目录 springboot多模块使用 前言 大佬把项目权限给我了,我就先下下来看看学习一下 一.识别 二.maven配置 1.安装maven 三.加载刷新 总结 前 ...
- vue登录3D效果
实现的效果 登录动态效果很炫酷,话不多说直接上代码: 组件template <template> <div class="entrance"> <di ...