Matplotlib绘图设置---文字和标签
文字和文字位置
通过plt.text()或ax.text()命令可在图形上添加文字。
Signature:
ax.text(x, y, s, fontdict=None, withdash=<deprecated parameter>, **kwargs)
Docstring:
Add text to the axes.
Add the text *s* to the axes at location *x*, *y* in data coordinates.
Parameters
----------
x, y : scalars
The position to place the text. By default, this is in data
coordinates. The coordinate system can be changed using the
*transform* parameter.
s : str
The text.
fontdict : dictionary, optional, default: None
A dictionary to override the default text properties. If fontdict
is None, the defaults are determined by your rc parameters.
withdash : boolean, optional, default: False
Creates a `~matplotlib.text.TextWithDash` instance instead of a
`~matplotlib.text.Text` instance.
Returns
-------
text : `.Text`
The created `.Text` instance.
Other Parameters
----------------
**kwargs : `~matplotlib.text.Text` properties.
Other miscellaneous text parameters.
Examples
--------
Individual keyword arguments can be used to override any given
parameter::
>>> text(x, y, s, fontsize=12)
The default transform specifies that text is in data coords,
alternatively, you can specify text in axis coords (0,0 is
lower-left and 1,1 is upper-right). The example below places
text in the center of the axes::
>>> text(0.5, 0.5, 'matplotlib', horizontalalignment='center',
... verticalalignment='center', transform=ax.transAxes)
You can put a rectangular box around the text instance (e.g., to
set a background color) by using the keyword `bbox`. `bbox` is
a dictionary of `~matplotlib.patches.Rectangle`
properties. For example::
>>> text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))
text函数中transform参数用于设置坐标变换,Matplotlib一共有三种方式设置文字位置:
- ax.transData : 默认的,以数据为基准的坐标变换(x轴和y轴的标签作为数据坐标);
- ax.transAxes: 以坐标轴为基准的坐标变换(以坐标轴左下角原点,按坐标轴尺寸的比例呈现坐标);
- fig.transFigure:以图形为基准的坐标变换(以图纸左下角原点,按图形尺寸的比例呈现坐标)。
三个坐标系呈现的文字都是左对齐,当改变坐标轴上下限时,只有transData坐标会受影响,其它两个坐标系不变。
fig, ax = plt.subplots(facecolor='lightgray')
ax.axis([0, 10, 0, 10])
ax.text(1, 5, ".Data:(1, 5)", transform=ax.transData)
ax.text(0.5, 0.1, ".Axes:(0.5, 0.1)", transform=ax.transAxes)
ax.text(0.2, 0.2, ".Figure:(0.2, 0.2)", transform=fig.transFigure)

ax.set_xlim(0, 2)
ax.set_ylim(-6, 6)
fig

箭头和注释
Matplotlib中plt.annotate()/ax.annotate()函数可用于创建文字以及箭头等。
Signature:
ax.annotate(s, xy, *args, **kwargs)
Docstring:
Annotate the point *xy* with text *text*.
In the simplest form, the text is placed at *xy*.
Optionally, the text can be displayed in another position *xytext*.
An arrow pointing from the text to the annotated point *xy* can then
be added by defining *arrowprops*.
Parameters
----------
text : str
The text of the annotation. *s* is a deprecated synonym for this
parameter.
xy : (float, float)
The point *(x,y)* to annotate.
xytext : (float, float), optional
The position *(x,y)* to place the text at.
If *None*, defaults to *xy*.
xycoords : str, `.Artist`, `.Transform`, callable or tuple, optional
The coordinate system that *xy* is given in. The following types
of values are supported:
- One of the following strings:
================= =============================================
Value Description
================= =============================================
'figure points' Points from the lower left of the figure
'figure pixels' Pixels from the lower left of the figure
'figure fraction' Fraction of figure from lower left
'axes points' Points from lower left corner of axes
'axes pixels' Pixels from lower left corner of axes
'axes fraction' Fraction of axes from lower left
'data' Use the coordinate system of the object being
annotated (default)
'polar' *(theta,r)* if not native 'data' coordinates
================= =============================================
- An `.Artist`: *xy* is interpreted as a fraction of the artists
`~matplotlib.transforms.Bbox`. E.g. *(0, 0)* would be the lower
left corner of the bounding box and *(0.5, 1)* would be the
center top of the bounding box.
- A `.Transform` to transform *xy* to screen coordinates.
- A function with one of the following signatures::
def transform(renderer) -> Bbox
def transform(renderer) -> Transform
where *renderer* is a `.RendererBase` subclass.
The result of the function is interpreted like the `.Artist` and
`.Transform` cases above.
- A tuple *(xcoords, ycoords)* specifying separate coordinate
systems for *x* and *y*. *xcoords* and *ycoords* must each be
of one of the above described types.
See :ref:`plotting-guide-annotation` for more details.
Defaults to 'data'.
textcoords : str, `.Artist`, `.Transform`, callable or tuple, optional
The coordinate system that *xytext* is given in.
All *xycoords* values are valid as well as the following
strings:
================= =========================================
Value Description
================= =========================================
'offset points' Offset (in points) from the *xy* value
'offset pixels' Offset (in pixels) from the *xy* value
================= =========================================
Defaults to the value of *xycoords*, i.e. use the same coordinate
system for annotation point and text position.
arrowprops : dict, optional
The properties used to draw a
`~matplotlib.patches.FancyArrowPatch` arrow between the
positions *xy* and *xytext*.
If *arrowprops* does not contain the key 'arrowstyle' the
allowed keys are:
========== ======================================================
Key Description
========== ======================================================
width The width of the arrow in points
headwidth The width of the base of the arrow head in points
headlength The length of the arrow head in points
shrink Fraction of total length to shrink from both ends
? Any key to :class:`matplotlib.patches.FancyArrowPatch`
========== ======================================================
If *arrowprops* contains the key 'arrowstyle' the
above keys are forbidden. The allowed values of
``'arrowstyle'`` are:
============ =============================================
Name Attrs
============ =============================================
``'-'`` None
``'->'`` head_length=0.4,head_width=0.2
``'-['`` widthB=1.0,lengthB=0.2,angleB=None
``'|-|'`` widthA=1.0,widthB=1.0
``'-|>'`` head_length=0.4,head_width=0.2
``'<-'`` head_length=0.4,head_width=0.2
``'<->'`` head_length=0.4,head_width=0.2
``'<|-'`` head_length=0.4,head_width=0.2
``'<|-|>'`` head_length=0.4,head_width=0.2
``'fancy'`` head_length=0.4,head_width=0.4,tail_width=0.4
``'simple'`` head_length=0.5,head_width=0.5,tail_width=0.2
``'wedge'`` tail_width=0.3,shrink_factor=0.5
============ =============================================
Valid keys for `~matplotlib.patches.FancyArrowPatch` are:
=============== ==================================================
Key Description
=============== ==================================================
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for :class:`matplotlib.patches.PathPatch`
=============== ==================================================
Defaults to None, i.e. no arrow is drawn.
annotation_clip : bool or None, optional
Whether to draw the annotation when the annotation point *xy* is
outside the axes area.
- If *True*, the annotation will only be drawn when *xy* is
within the axes.
- If *False*, the annotation will always be drawn.
- If *None*, the annotation will only be drawn when *xy* is
within the axes and *xycoords* is 'data'.
Defaults to *None*.
**kwargs
Additional kwargs are passed to `~matplotlib.text.Text`.
fig, ax = plt.subplots()
x = np.linspace(0, 20, 1000)
ax.plot(x, np.cos(x))
ax.axis('equal')
#arrowprops用于设置箭头风格,xy设置箭头位置,xytext设置文字位置
ax.annotate('local maximum', xy=(6.28, 1), xytext=(10, 4),
arrowprops=dict(facecolor='black', shrink=0.05))
ax.annotate('local minimum', xy=(5 * np.pi, -1), xytext=(2, -6),
arrowprops=dict(arrowstyle="->",connectionstyle="angle3,angleA=0,angleB=90"))

Matplotlib绘图设置---文字和标签的更多相关文章
- Python matplotlib绘图设置图例
一.语法简介 plt.legend(loc=2,edgecolor='red',facecolor='green',shadow='True',fontsize=10) #edgecolor 图例边框 ...
- 【划重点】Python matplotlib绘图设置坐标轴的刻度
一.语法简介 plt.xticks(ticks,labels,rotation=30,fontsize=10,color='red',fontweight='bold',backgroundcolor ...
- Python matplotlib绘图设置坐标轴的标题
一.语法简介 plt.xlabel("销售月份",fontsize=16,color='red',fontweight='bold',loc='center',background ...
- python绘图设置标题、标签,无法显示中文
先说解决办法:在程序开始之前,引入使用的模块之后,添加如下代码: plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unico ...
- matplotlib绘图教程,设置标签与图例
大家好,欢迎大家阅读周四数据处理专题,我们继续介绍matplotlib作图工具. 在上一篇文章当中我们介绍了matplotlib这个包当中颜色.标记和线条这三种画图的设置,今天我们同样也介绍三种新的设 ...
- Matplotlib绘图双纵坐标轴设置及控制设置时间格式
双y轴坐标轴图 今天利用matplotlib绘图,想要完成一个双坐标格式的图. fig=plt.figure(figsize=(20,15)) ax1=fig.add_subplot(111) ax1 ...
- matplotlib 绘图
http://blog.csdn.net/jkhere/article/details/9324823 都打一遍 5 matplotlib-绘制精美的图表 matplotlib 是python最著名的 ...
- matplotlib绘图的基本操作
转自:Laumians博客园 更简明易懂看Matplotlib Python 画图教程 (莫烦Python)_演讲•公开课_科技_bilibili_哔哩哔哩 https://www.bilibili. ...
- python中利用matplotlib绘图可视化知识归纳
python中利用matplotlib绘图可视化知识归纳: (1)matplotlib图标正常显示中文 import matplotlib.pyplot as plt plt.rcParams['fo ...
- matplotlib绘图基本用法-转自(http://blog.csdn.net/mao19931004/article/details/51915016)
本文转载自http://blog.csdn.net/mao19931004/article/details/51915016 <!DOCTYPE html PUBLIC "-//W3C ...
随机推荐
- Java static 关键字的使用 小练习
1 package com.bytezreo.statictest2; 2 3 /** 4 * 5 * @Description static 关键字的使用 小练习 6 * @author Bytez ...
- python用matplotlib或boxplot作图的时候,中文标注无法正常显示,乱码为小方框的解决办法
第一种 import matplotlib.pyplot as plt plt.rc("font",family="SimHei",size="22& ...
- Codeforces Round 770 (Div. 2)(数学异或奇偶性)
B. Fortune Telling 拿到题目看数据范围之后就知道暴力显然是来不及的. 那么只能找性质. \(考虑x和x+3的不同 \quad 奇偶性不同\) \(然后考虑两种操作对于一个数的奇偶性的 ...
- sed 资源
sed教程 菜鸟教程正则 MDN正则 正则测试工具 文本替换 s sed有多种分割符,比如你要替换路径字符串时,使用反斜杠很难看,则可以用 : 或者 _ 或者 | 这三个符号都可作为分隔符. & ...
- XAF Blazor 中使用 Blazor 组件
前言 文章的标题是不是感觉有点奇怪,但实际我们在XAFBlazor中使用Blazor组件是很繁琐的,我们需要将Blazor组件封装成属性编辑器(PropertyEditor),再用非持久化对象(Non ...
- 【预训练语言模型】BERT原理解析、常见问题和微调实战
一.BERT原理 1.概述 背景:通过在大规模语料上预训练语言模型,可以显著提高其在NLP下游任务的表现. 动机:限制模型潜力的主要原因在于现有模型使用的都是单向的语言模型 ...
- springboot+vue3+nuxt3+ts+minio开发的dsblog3.0前后端博客
springboot+vue3+nuxt3+ts+minio开发的dsblog3.0前后端博客 转载自:www.javaman.cn 一.技术栈 本博客系统采用了先进且成熟的技术栈,包括Spring ...
- Mysql范式
什么是范式? "范式(NF)"是"符合某一种级别的关系模式的集合,表示一个关系内部各属性之间的联系的合理化程度".很晦涩吧?实际上你可以把它粗略地理解为一张数据 ...
- 【leetcode 春季比赛3题 二叉搜索树染色】广度搜索
暴力: import java.util.ArrayList; import java.util.Collections; import java.util.Comparator; import ja ...
- 记录--为什么没有人能讲清楚 BFC?
这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 一.你看得懂权威的解释吗? 1. CSS 规范中对 BFC 的描述 CSS 规范(英文) | 中文翻译 浮动,绝对定位的元素,非块盒的块容 ...