Matplotlib绘图设置---文字和标签
文字和文字位置
通过plt.text()或ax.text()命令可在图形上添加文字。
Signature:
ax.text(x, y, s, fontdict=None, withdash=<deprecated parameter>, **kwargs)
Docstring:
Add text to the axes.
Add the text *s* to the axes at location *x*, *y* in data coordinates.
Parameters
----------
x, y : scalars
The position to place the text. By default, this is in data
coordinates. The coordinate system can be changed using the
*transform* parameter.
s : str
The text.
fontdict : dictionary, optional, default: None
A dictionary to override the default text properties. If fontdict
is None, the defaults are determined by your rc parameters.
withdash : boolean, optional, default: False
Creates a `~matplotlib.text.TextWithDash` instance instead of a
`~matplotlib.text.Text` instance.
Returns
-------
text : `.Text`
The created `.Text` instance.
Other Parameters
----------------
**kwargs : `~matplotlib.text.Text` properties.
Other miscellaneous text parameters.
Examples
--------
Individual keyword arguments can be used to override any given
parameter::
>>> text(x, y, s, fontsize=12)
The default transform specifies that text is in data coords,
alternatively, you can specify text in axis coords (0,0 is
lower-left and 1,1 is upper-right). The example below places
text in the center of the axes::
>>> text(0.5, 0.5, 'matplotlib', horizontalalignment='center',
... verticalalignment='center', transform=ax.transAxes)
You can put a rectangular box around the text instance (e.g., to
set a background color) by using the keyword `bbox`. `bbox` is
a dictionary of `~matplotlib.patches.Rectangle`
properties. For example::
>>> text(x, y, s, bbox=dict(facecolor='red', alpha=0.5))
text函数中transform参数用于设置坐标变换,Matplotlib一共有三种方式设置文字位置:
- ax.transData : 默认的,以数据为基准的坐标变换(x轴和y轴的标签作为数据坐标);
- ax.transAxes: 以坐标轴为基准的坐标变换(以坐标轴左下角原点,按坐标轴尺寸的比例呈现坐标);
- fig.transFigure:以图形为基准的坐标变换(以图纸左下角原点,按图形尺寸的比例呈现坐标)。
三个坐标系呈现的文字都是左对齐,当改变坐标轴上下限时,只有transData坐标会受影响,其它两个坐标系不变。
fig, ax = plt.subplots(facecolor='lightgray')
ax.axis([0, 10, 0, 10])
ax.text(1, 5, ".Data:(1, 5)", transform=ax.transData)
ax.text(0.5, 0.1, ".Axes:(0.5, 0.1)", transform=ax.transAxes)
ax.text(0.2, 0.2, ".Figure:(0.2, 0.2)", transform=fig.transFigure)

ax.set_xlim(0, 2)
ax.set_ylim(-6, 6)
fig

箭头和注释
Matplotlib中plt.annotate()/ax.annotate()函数可用于创建文字以及箭头等。
Signature:
ax.annotate(s, xy, *args, **kwargs)
Docstring:
Annotate the point *xy* with text *text*.
In the simplest form, the text is placed at *xy*.
Optionally, the text can be displayed in another position *xytext*.
An arrow pointing from the text to the annotated point *xy* can then
be added by defining *arrowprops*.
Parameters
----------
text : str
The text of the annotation. *s* is a deprecated synonym for this
parameter.
xy : (float, float)
The point *(x,y)* to annotate.
xytext : (float, float), optional
The position *(x,y)* to place the text at.
If *None*, defaults to *xy*.
xycoords : str, `.Artist`, `.Transform`, callable or tuple, optional
The coordinate system that *xy* is given in. The following types
of values are supported:
- One of the following strings:
================= =============================================
Value Description
================= =============================================
'figure points' Points from the lower left of the figure
'figure pixels' Pixels from the lower left of the figure
'figure fraction' Fraction of figure from lower left
'axes points' Points from lower left corner of axes
'axes pixels' Pixels from lower left corner of axes
'axes fraction' Fraction of axes from lower left
'data' Use the coordinate system of the object being
annotated (default)
'polar' *(theta,r)* if not native 'data' coordinates
================= =============================================
- An `.Artist`: *xy* is interpreted as a fraction of the artists
`~matplotlib.transforms.Bbox`. E.g. *(0, 0)* would be the lower
left corner of the bounding box and *(0.5, 1)* would be the
center top of the bounding box.
- A `.Transform` to transform *xy* to screen coordinates.
- A function with one of the following signatures::
def transform(renderer) -> Bbox
def transform(renderer) -> Transform
where *renderer* is a `.RendererBase` subclass.
The result of the function is interpreted like the `.Artist` and
`.Transform` cases above.
- A tuple *(xcoords, ycoords)* specifying separate coordinate
systems for *x* and *y*. *xcoords* and *ycoords* must each be
of one of the above described types.
See :ref:`plotting-guide-annotation` for more details.
Defaults to 'data'.
textcoords : str, `.Artist`, `.Transform`, callable or tuple, optional
The coordinate system that *xytext* is given in.
All *xycoords* values are valid as well as the following
strings:
================= =========================================
Value Description
================= =========================================
'offset points' Offset (in points) from the *xy* value
'offset pixels' Offset (in pixels) from the *xy* value
================= =========================================
Defaults to the value of *xycoords*, i.e. use the same coordinate
system for annotation point and text position.
arrowprops : dict, optional
The properties used to draw a
`~matplotlib.patches.FancyArrowPatch` arrow between the
positions *xy* and *xytext*.
If *arrowprops* does not contain the key 'arrowstyle' the
allowed keys are:
========== ======================================================
Key Description
========== ======================================================
width The width of the arrow in points
headwidth The width of the base of the arrow head in points
headlength The length of the arrow head in points
shrink Fraction of total length to shrink from both ends
? Any key to :class:`matplotlib.patches.FancyArrowPatch`
========== ======================================================
If *arrowprops* contains the key 'arrowstyle' the
above keys are forbidden. The allowed values of
``'arrowstyle'`` are:
============ =============================================
Name Attrs
============ =============================================
``'-'`` None
``'->'`` head_length=0.4,head_width=0.2
``'-['`` widthB=1.0,lengthB=0.2,angleB=None
``'|-|'`` widthA=1.0,widthB=1.0
``'-|>'`` head_length=0.4,head_width=0.2
``'<-'`` head_length=0.4,head_width=0.2
``'<->'`` head_length=0.4,head_width=0.2
``'<|-'`` head_length=0.4,head_width=0.2
``'<|-|>'`` head_length=0.4,head_width=0.2
``'fancy'`` head_length=0.4,head_width=0.4,tail_width=0.4
``'simple'`` head_length=0.5,head_width=0.5,tail_width=0.2
``'wedge'`` tail_width=0.3,shrink_factor=0.5
============ =============================================
Valid keys for `~matplotlib.patches.FancyArrowPatch` are:
=============== ==================================================
Key Description
=============== ==================================================
arrowstyle the arrow style
connectionstyle the connection style
relpos default is (0.5, 0.5)
patchA default is bounding box of the text
patchB default is None
shrinkA default is 2 points
shrinkB default is 2 points
mutation_scale default is text size (in points)
mutation_aspect default is 1.
? any key for :class:`matplotlib.patches.PathPatch`
=============== ==================================================
Defaults to None, i.e. no arrow is drawn.
annotation_clip : bool or None, optional
Whether to draw the annotation when the annotation point *xy* is
outside the axes area.
- If *True*, the annotation will only be drawn when *xy* is
within the axes.
- If *False*, the annotation will always be drawn.
- If *None*, the annotation will only be drawn when *xy* is
within the axes and *xycoords* is 'data'.
Defaults to *None*.
**kwargs
Additional kwargs are passed to `~matplotlib.text.Text`.
fig, ax = plt.subplots()
x = np.linspace(0, 20, 1000)
ax.plot(x, np.cos(x))
ax.axis('equal')
#arrowprops用于设置箭头风格,xy设置箭头位置,xytext设置文字位置
ax.annotate('local maximum', xy=(6.28, 1), xytext=(10, 4),
arrowprops=dict(facecolor='black', shrink=0.05))
ax.annotate('local minimum', xy=(5 * np.pi, -1), xytext=(2, -6),
arrowprops=dict(arrowstyle="->",connectionstyle="angle3,angleA=0,angleB=90"))

Matplotlib绘图设置---文字和标签的更多相关文章
- Python matplotlib绘图设置图例
一.语法简介 plt.legend(loc=2,edgecolor='red',facecolor='green',shadow='True',fontsize=10) #edgecolor 图例边框 ...
- 【划重点】Python matplotlib绘图设置坐标轴的刻度
一.语法简介 plt.xticks(ticks,labels,rotation=30,fontsize=10,color='red',fontweight='bold',backgroundcolor ...
- Python matplotlib绘图设置坐标轴的标题
一.语法简介 plt.xlabel("销售月份",fontsize=16,color='red',fontweight='bold',loc='center',background ...
- python绘图设置标题、标签,无法显示中文
先说解决办法:在程序开始之前,引入使用的模块之后,添加如下代码: plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unico ...
- matplotlib绘图教程,设置标签与图例
大家好,欢迎大家阅读周四数据处理专题,我们继续介绍matplotlib作图工具. 在上一篇文章当中我们介绍了matplotlib这个包当中颜色.标记和线条这三种画图的设置,今天我们同样也介绍三种新的设 ...
- Matplotlib绘图双纵坐标轴设置及控制设置时间格式
双y轴坐标轴图 今天利用matplotlib绘图,想要完成一个双坐标格式的图. fig=plt.figure(figsize=(20,15)) ax1=fig.add_subplot(111) ax1 ...
- matplotlib 绘图
http://blog.csdn.net/jkhere/article/details/9324823 都打一遍 5 matplotlib-绘制精美的图表 matplotlib 是python最著名的 ...
- matplotlib绘图的基本操作
转自:Laumians博客园 更简明易懂看Matplotlib Python 画图教程 (莫烦Python)_演讲•公开课_科技_bilibili_哔哩哔哩 https://www.bilibili. ...
- python中利用matplotlib绘图可视化知识归纳
python中利用matplotlib绘图可视化知识归纳: (1)matplotlib图标正常显示中文 import matplotlib.pyplot as plt plt.rcParams['fo ...
- matplotlib绘图基本用法-转自(http://blog.csdn.net/mao19931004/article/details/51915016)
本文转载自http://blog.csdn.net/mao19931004/article/details/51915016 <!DOCTYPE html PUBLIC "-//W3C ...
随机推荐
- 08-Redis系列之-Redis布隆过滤器,MySQL主从,Django读写分离
Redis实现布隆过滤器 前言 布隆过滤器使用场景 比如有如下几个需求: 原本有10亿个号码,现在又来了10万个号码,要快速准确判断这10万个号码是否在10亿个号码库中? 解决办法一:将10亿个号码存 ...
- Autofac入门与替代ASP.NET Core、ABP依赖注入容器
目录 Autofac 的使用 1,简单的实践 2,注册组件 3,Lambda 注册组件 4,注册泛型 5,属性注入 6,解析服务 7,生命周期 8,实例作用域 9,Autofac 其它需要学习的知识 ...
- redis 安装的参考文章
redis 安装 : https://www.runoob.com/redis/redis-install.html
- Jmeter 响应断言你知道多少?
1 断言各组件介绍 Apply to:同上 测试字段: * 响应文本:响应体 * 响应代码:响应状态码 * 响应信息:状态码的消息 * 响应头:顾名思义就是响应头 * 请求头:顾名思义就是请求头 * ...
- 【项目实战】SpringBoot+vue+iview打造一个极简个人博客系统
基于SpringBoot+vue+iview个人极简博客 项目介绍 个人极简博客 [个人极简博客]是一个适用于初学者学习的博客系统,其中包含文章分类.写文章.标签管理.用户管理等基础功能,代码简洁注释 ...
- RocketMQ(5) 订阅关系的一致性规范
多个消费者组订阅了多个Topic,并且每个消费者组里的多个消费者实例的订阅关系应该保持一致. 例如下消费关系, 不同的消费组,消费不同的队列,相同的消费组订阅相同的队列,tag 错误示例: 一个消费者 ...
- Java 手动抛异常
1 package com.bytezero.throwable; 2 3 import java.io.File; 4 import java.io.FileInputStream; 5 impor ...
- python爬虫 xpath入门与lxml库基本使用,我们一同学习xpath
目录 什么是XPath? xpath语法 知识点 节点 选取节点: 选取a节点下所有的href属性 ../ 选取父节点 bookstore/book 选取子元素li bookstore//book 不 ...
- kafka的数据同步原理ISR、ACK、LEO、HW
1.数据可靠性保证,数据同步 为保证 producer 发送的数据,能可靠的发送到指定的 topic,topic 的每个 partition 收到 producer 发送的数据后,都需要向 produ ...
- IDEA使用与多线程
IDEA缩写和快捷键 psvm全称public static void main sout 全称public static void main alt+enter 处理异常 s.out 自动打印s c ...