dp线段树优化
Description
The little cat takes over the management of a new park. There is a large circular statue in the center of the park, surrounded by N pots of flowers. Each potted flower will be assigned to an integer number (possibly negative) denoting how attractive it is. See the following graph as an example:
(Positions of potted flowers are assigned to index numbers in the range of 1 ... N. The i-th pot and the (i + 1)-th pot are consecutive for any given i (1 <= i < N), and 1st pot is next to N-th pot in addition.)

The board chairman informed the little cat to construct "ONE arc-style cane-chair" for tourists having a rest, and the sum of attractive values of the flowers beside the cane-chair should be as large as possible. You should notice that a cane-chair cannot be a total circle, so the number of flowers beside the cane-chair may be 1, 2, ..., N - 1, but cannot be N. In the above example, if we construct a cane-chair in the position of that red-dashed-arc, we will have the sum of 3+(-2)+1+2=4, which is the largest among all possible constructions.
Unluckily, some booted cats always make trouble for the little cat, by changing some potted flowers to others. The intelligence agency of little cat has caught up all the M instruments of booted cats' action. Each instrument is in the form of "A B", which means changing the A-th potted flowered with a new one whose attractive value equals to B. You have to report the new "maximal sum" after each instruction.
Input
There will be a single test data in the input. You are given an integer N (4 <= N <= 100000) in the first input line.
The second line contains N integers, which are the initial attractive value of each potted flower. The i-th number is for the potted flower on the i-th position.
A single integer M (4 <= M <= 100000) in the third input line, and the following M lines each contains an instruction "A B" in the form described above.
Restriction: All the attractive values are within [-1000, 1000]. We guarantee the maximal sum will be always a positive integer.
Output
For each instruction, output a single line with the maximum sum of attractive values for the optimum cane-chair.
Sample Input
5
3 -2 1 2 -5
4
2 -2
5 -5
2 -4
5 -1
Sample Output
4
4
3
5
题目大意:给定一个环形数列,每次更改一个数,求其最大子段和(长度不能为 n )
数据的\(n,m\)极大,\(O(n^2)\)的方法就否决了。第一次知道线段树可求最大子段和,线段树tql。
环形最大子段和在不破坏原有队列情况下,只有两种可能,1.中间的一段 2.左端前缀和+右端前缀和
先不管长度,于是我们可以维护左最大前缀,右最大前缀,区间最大值,区间和,则pushup函数就出来了:
tree[id].lmx=max(tree[ls].lmx,tree[ls].s+tree[rs].lmx);
tree[id].rmx=max(tree[rs].rmx,tree[rs].s+tree[ls].rmx);
tree[id].s=tree[ls].s+tree[rs].s;
tree[id].mx=max(tree[ls].mx,max(tree[rs].mx,tree[ls].rmx+tree[rs].lmx));
然后对于更新后输出结果讨论,只需要比较上述的两种可能就可以了。
还是得管长度,当长度为n时,我们需要减去最短的子段和,所以线段树也需要维护所有最小值:
tree[id].lmn=min(tree[ls].lmn,tree[ls].s+tree[rs].lmn);
tree[id].rmn=min(tree[rs].rmn,tree[rs].s+tree[ls].rmn);
tree[id].mn=min(tree[ls].mn,min(tree[rs].mn,tree[ls].rmn+tree[rs].lmn));
所以答案是中间的一段max即tree[1].mx,左端前缀和+右端前缀和即tree[1].s-tree[1].mn比大小
因为tree[1].mx有可能包含整个数列,所以当tree[1].mx=tree[1].s时只取左右端前缀和。(证明如下)
如果tree[1].sum<=0,则tree[1].maxsum分两种情况讨论:
1.tree[1].maxsum包含区间1~n,则与tree[1].sum等价,输出tree[1].sum-tree[1].minsum正确
2.tree[1].maxsum只包含区间1~n部分,因为tree[1].maxsum是确定的,且tree[1].maxsum=tree[1].sum,tree[1].minsum<0(因为tree[1].sum<0),则
tree[1].sum-tree[1].minsum仍大于等于tree[1].maxsum,结果仍正确
如果tree[1].sum>0,易证。
Code
#include<cstdio>
#include<iostream>
using namespace std;
const int N=1e5+5;
struct qh{
int s,mx,mn,lmx,lmn,rmx,rmn;
}tree[N<<2];
inline int Rd(){
int s=0,w=1;char ch=getchar();
while (ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while (ch>='0'&&ch<='9') s=(s<<1)+(s<<3)+ch-'0',ch=getchar();
return s*w;
}
#define ls id<<1
#define rs ls|1
#define M (l+r>>1)
void pushup(int id){
tree[id].s=tree[ls].s+tree[rs].s;
tree[id].lmx=max(tree[ls].lmx,tree[ls].s+tree[rs].lmx);
tree[id].lmn=min(tree[ls].lmn,tree[ls].s+tree[rs].lmn);
tree[id].rmx=max(tree[rs].rmx,tree[rs].s+tree[ls].rmx);
tree[id].rmn=min(tree[rs].rmn,tree[rs].s+tree[ls].rmn);
tree[id].mx=max(tree[ls].mx,max(tree[rs].mx,tree[ls].rmx+tree[rs].lmx));
tree[id].mn=min(tree[ls].mn,min(tree[rs].mn,tree[ls].rmn+tree[rs].lmn));
return ;
}
void update(int id,int l,int r,int x,int v){
if(l==r){
tree[id].s=tree[id].mx=tree[id].mn=tree[id].lmx=tree[id].lmn=tree[id].rmx=tree[id].rmn=v;
return ;
}
if(x<=M) update(ls,l,M,x,v);
else update(rs,M+1,r,x,v);
pushup(id);
}
#undef ls
#undef rs
#undef M
int main(){
int n=Rd();
for(int i=1,x;i<=n;i++) x=Rd(),update(1,1,n,i,x);
int m=Rd();
while (m--){
int a=Rd(),b=Rd();
update(1,1,n,a,b);
if(tree[1].mx==tree[1].s) printf("%d\n",tree[1].s-tree[1].mn);
else printf("%d\n",max(tree[1].mx,tree[1].s-tree[1].mn));
}
return 0;
}
Start :2022.09.07:16:20
Finish:2022.09.07:17:22
dp线段树优化的更多相关文章
- [USACO2005][POJ3171]Cleaning Shifts(DP+线段树优化)
题目:http://poj.org/problem?id=3171 题意:给你n个区间[a,b],每个区间都有一个费用c,要你用最小的费用覆盖区间[M,E] 分析:经典的区间覆盖问题,百度可以搜到这个 ...
- HDU4719-Oh My Holy FFF(DP线段树优化)
Oh My Holy FFF Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) T ...
- UVA-1322 Minimizing Maximizer (DP+线段树优化)
题目大意:给一个长度为n的区间,m条线段序列,找出这个序列的一个最短子序列,使得区间完全被覆盖. 题目分析:这道题不难想,定义状态dp(i)表示用前 i 条线段覆盖区间1~第 i 线段的右端点需要的最 ...
- zoj 3349 dp + 线段树优化
题目:给出一个序列,找出一个最长的子序列,相邻的两个数的差在d以内. /* 线段树优化dp dp[i]表示前i个数的最长为多少,则dp[i]=max(dp[j]+1) abs(a[i]-a[j])&l ...
- 完美字符子串 单调队列预处理+DP线段树优化
题意:有一个长度为n的字符串,每一位只会是p或j.你需要取出一个子串S(注意不是子序列),使得该子串不管是从左往右还是从右往左取,都保证每时每刻已取出的p的个数不小于j的个数.如果你的子串是最长的,那 ...
- Contest20140906 ProblemA dp+线段树优化
Problem A 内存限制 256MB 时间限制 5S 程序文件名 A.pas/A.c/A.cpp 输入文件 A.in 输出文件 A.out 你有一片荒地,为了方便讨论,我们将这片荒地看成一条直线, ...
- POJ 3171.Cleaning Shifts-区间覆盖最小花费-dp+线段树优化(单点更新、区间查询最值)
Cleaning Shifts Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4721 Accepted: 1593 D ...
- 题解 HDU 3698 Let the light guide us Dp + 线段树优化
http://acm.hdu.edu.cn/showproblem.php?pid=3698 Let the light guide us Time Limit: 5000/2000 MS (Java ...
- 省选模拟赛 4.26 T1 dp 线段树优化dp
LINK:T1 算是一道中档题 考试的时候脑残了 不仅没写优化 连暴力都打挂了. 容易发现一个性质 那就是同一格子不会被两种以上的颜色染.(颜色就三种. 通过这个性质就可以进行dp了.先按照左端点排序 ...
- 【uva1502/hdu4117-GRE Words】DP+线段树优化+AC自动机
这题我的代码在hdu上AC,在uva上WA. 题意:按顺序输入n个串以及它的权值di,要求在其中选取一些串,前一个必须是后一个的子串.问d值的和最大是多少. (1≤n≤2×10^4 ,串的总长度< ...
随机推荐
- 【Git】上传代码到码云
教程来自于这个上面: https://www.jianshu.com/p/3e0b213ab03d 第一步:创建码云仓库 具体怎么点选这里不再演示了 第二步:创建本地文件夹 [这个目录用来做本地仓库, ...
- 【Redis】05 持久化
持久化概述 Redis提供了不同的持久性选项: 1.RDB持久性按指定的时间间隔执行数据集的时间点快照. 2.AOF持久性会记录服务器接收的每个写入操作,这些操作将在服务器启动时再次播放,以重建原始数 ...
- 实现一个终端文本编辑器来学习golang语言
欢迎!这个系列的博文会带你使用golang语言来编写一个你自己的文本编辑器. 首先想说说写这个系列文章的动机. 其实作为校招生加入某头部互联网大厂一转眼已经快4年了.可以说该大厂算是比较早的用gola ...
- jax中对单步操作的缓存对性能造成的影响
代码: import jax.numpy as jnp from jax import grad, jit, vmap from jax import random def selu(x, alpha ...
- 【转载】 Sun RPC 编程简介
原文地址: http://blog.chinaunix.net/uid-1724205-id-2813082.html ======================================== ...
- 深度学习用什么卡比较给力?—— A100/H100真的么有RTX4090好吗?
近日看到这么一个帖子: https://www.zhihu.com/question/612568623/answer/3131709693 ============================= ...
- 2023 ICPC 合肥游记
board zsy 11.24 开始嗓子疼了,但可以忍受.晚上睡的很不舒服 11.25 起床就开始难受,还得骑车到地铁站,应该打个车来着.不过路上拍到了很好看的朝霞(写到这里才想起来还没发朋友圈给 t ...
- Camera | 11.瑞芯微摄像头采集图像颜色偏绿解决笔记
前言 在实际调试基于瑞芯微平台的camera过程中,发现显示的图片发绿, 现在把调试步骤分享给大家: 1.修改iq文件 sdk中位置: @external/camera_engine_rkaiq/iq ...
- Windows下cmd中cd命令不起作用的原因和解决办法
Windows下cmd中cd命令不起作用的原因和解决办法 如图:cd命令无效 原因:windows系统cmd换目录跨磁盘的话需要先进行磁盘的转换
- 【Mac + Appium + Java1.8(二)】之Android模拟器自动化测试脚本开发以及简易例子
直接上代码: import io.appium.java_client.AppiumDriver; import org.junit.After; import org.junit.Before; i ...