Codeforces 1254B1 - Send Boxes to Alice (Easy Version)
题意
有\(n(1\leq n\leq 10^5)\)个盒子,每个盒子有\(a_i(0\leq a_i \leq 1)\)个糖果,你每一次可以将第\(i\)个盒子里的糖果放到第\(i-1\)或\(i+1\)个盒子中(如果盒子存在)。最后要使每个盒子的糖果数量都整除\(k(k>1)\)(注意盒子可以为空),问最小操作数。
分析
\((1)\)因为糖果是类似于平铺的形式,堆叠时,我们可以发现所有存在糖果的盒子中数量均为\(k\)。若存在一个盒子中有\(2*k\)个糖果,在平铺到堆叠的过程中,将另外\(k\)个糖果分在更近的盒子能得到更小的答案。
\((2)\)设糖果总数为\(cnt\),所有存在糖果的盒子数量均为\(k\),我们又可以发现,最小的操作是将\(1\)~\(k\)、\(k+1\)~\(2k\)、……、\(i*k+1\)~\((i+1)*k\)放在一起,即将相邻的\(k\)个放在一堆。
\((3)\)对于某\(k\)个糖果,需要找到一个盒子,这个盒子到这\(k\)个糖果的距离最小(kNN算法)。我们将糖果看成数轴上的点,运用高一的绝对值知识(我忘了,我向高中数学老师谢罪)。
- 若\(k\)为奇数,则将该盒子设置为最中间糖果所在的盒子
- 若\(k\)为偶数,则将该盒子设置为最中间两个糖果中任意一个所在的盒子
即对于\(i*k+1\)~\((i+1)*k\)来说,第\(k-i/2\)个盒子,设其坐标为\(ave\)。
\((4)\)为降低时间复杂度,我们采取前缀的思想,\(sum[i]\)表示坐标\(i\)之前的糖果的坐标总和(没糖果的盒子不加),\(num[i]\)表示坐标\(i\)之前有多少糖果。
\((5)\)枚举可以被\(cnt\)整除的\(k\),模拟\((2)\)的过程,设\(first\)为第\(i*k+1\)个糖果的坐标,\(last\)为第\((i+1)*k\)个糖果的坐标,那么每个循环都得加上\((num[ave] - num[first - 1])*ave-(sum[ave] - sum[first - 1])+(sum[last] - sum[ave])-(num[last] - num[ave])*ave\),意思为\(ave\)之前的操作次数加上\(ave\)之后的操作次数,最后取最小值
\((6)\)记得开\(long\ long\),\(INF\)也记得开大一点。
#pragma GCC optimize(3, "Ofast", "inline")
#include <bits/stdc++.h>
#define start ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define ll long long
#define LL long long
#define pii pair<int,int>
#define int ll
using namespace std;
const int maxn = (ll) 1e5 + 5;
const int mod = 1000000007;
const int inf = 0x3f3f3f3f3f3f3f3f;
int a[maxn];
int cnt = 0;
int sum[maxn];
int num[maxn];
signed main() {
start;
int n;
cin >> n;
for (int i = 1; i <= n; ++i) {
int x;
cin >> x;
num[i] = num[i - 1] + x;//前缀数量
if (x) {
a[++cnt] = i;
sum[i] = i;
}
}
for (int i = 1; i <= n; ++i)//前缀坐标和
sum[i] += sum[i - 1];
int ans = inf;
for (int i = 2; i <= cnt; ++i) {
if (cnt % i == 0) {
int tmp = 0;
for (int k = i; k <= cnt; k += i) {//k为最后的糖果
int first = a[k - i + 1];
int last = a[k];
int ave = a[k - i / 2];
int num1 = num[ave] - num[first - 1];
int num2 = num[last] - num[ave];
int tot1 = sum[ave] - sum[first - 1];
int tot2 = sum[last] - sum[ave];
int t = num1 * ave - tot1 + tot2 - num2 * ave;
tmp += t;
}
ans = min(ans, tmp);
}
}
if (ans == inf)
cout << -1;
else
cout << ans;
return 0;
}
Codeforces 1254B1 - Send Boxes to Alice (Easy Version)的更多相关文章
- Codeforces Round #601 (Div. 2) E1 Send Boxes to Alice (Easy Version)
#include <bits/stdc++.h> using namespace std; typedef long long ll; ; int a[N]; int n; bool pr ...
- E1.Send Boxes to Alice(Easy Version)//中位数
发送盒子给Alice(简单版本) 题意:准备n个盒子放巧克力,从1到n编号,初始的时候,第i个盒子有ai个巧克力. Bob是一个聪明的家伙,他不会送n个空盒子给Alice,换句话说,每个盒子里面都有巧 ...
- E1. Send Boxes to Alice (Easy Version)
题解: 保存每个1的位置.然后记录1的总个数cnt,如果存在一个k使得这个k是每个集合的倍数,那么为了使操作次数最小,这个k应该是cnt的质因子.(因为都是每个集合的数目1,使每个集合的数目变为2需要 ...
- Codeforces Round #601 (Div. 2) E2. Send Boxes to Alice (Hard Version)
Codeforces Round #601 (Div. 2) E2. Send Boxes to Alice (Hard Version) N个盒子,每个盒子有a[i]块巧克力,每次操作可以将盒子中的 ...
- Codeforces1254B2 Send Boxes to Alice (Hard Version)(贪心)
题意 n个数字的序列a,将i位置向j位置转移x个(a[i]-x,a[j]+x)的花费为\(x\times |i-j|\),最终状态可行的条件为所有a[i]均被K整除(K>1),求最小花费 做法 ...
- Codeforces 1255E Send Boxes to Alice(前缀和+枚举+数论)
我们考虑前缀和sum[i],如果将a[i+1]中的一个塞入a[i]中,则不影响sum[i+1],但是sum[i]++,如果将a[i]中的一个塞入a[i+1],则不影响sum[i+1],但是sum[i] ...
- E2. Send Boxes to Alice (Hard Version)
秒的有点难以理解:https://blog.csdn.net/weixin_42868863/article/details/103200132 #include<bits/stdc++.h&g ...
- Send Boxes to Alice
E. Send Boxes to Alice 首先求出每一个位置的前缀和. 对答案进行复杂度为\(\sqrt{a[n]}\)的遍历,因为最后的答案不可能大于\(\sqrt{a[n]}\) for(ll ...
- 【Codeforces 1108E1】Array and Segments (Easy version)
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 枚举最大值和最小值在什么地方. 显然,只要包含最小值的区间,都让他减少. 因为就算那个区间包含最大值,也无所谓,因为不会让答案变小. 但是那些 ...
- 【Codeforces 1118D1】Coffee and Coursework (Easy version)
[链接] 我是链接,点我呀:) [题意] 题意 [题解] 从小到大枚举天数. 然后贪心地,从大到小分配a[i]到各个天当中. a[n]分配到第1天,a[n-1]分配到第2天,...然后a[n-x]又分 ...
随机推荐
- jq如何将获取到的css属性值变为int类型
情况 小王:诶诶诶?我用js中css方法获取到的属性值怎么判断错误了呀?怎么办怎么办? Allen:害,小王,你是不是没有注意左右两边的类型,会不会是数据类型不一致导致的? 事故现场: if($(&q ...
- 一天吃透Spring面试八股文
内容摘自我的学习网站:topjavaer.cn Spring是一个轻量级的开源开发框架,主要用于管理 Java 应用程序中的组件和对象,并提供各种服务,如事务管理.安全控制.面向切面编程和远程访问等. ...
- Windows全能终端神器MobaXterm
MobaXterm 又名 MobaXVT,是一款增强型终端.X 服务器和 Unix 命令集(GNU/ Cygwin)工具箱. MobaXterm 可以开启多个终端视窗,以最新的 X 服务器为基础的 X ...
- 常见 Linux 提权
Common Linux Privesc 记录 常见 Linux 提权的 提权方式:水平提权,垂直提权. 水平提权:这是您通过接管与您处于相同权限级别的不同用户来扩大您对受感染系统的影响的地方. 例如 ...
- Excel DDE Commands
! https://zhuanlan.zhihu.com/p/635569763 Excel DDE Commands 连接参数 Application: Excel Topic: System: 整 ...
- [MAUI]写一个跨平台富文本编辑器
@ 目录 原理 创建编辑器 定义 实现复合样式 选择范围 字号 字体颜色与背景色 字体下划线 字体加粗与斜体 序列化和反序列化 跨平台实现 集成至编辑器 创建控件 使用控件 最终效果 已知问题 项目地 ...
- CANoe学习笔记(三):CANoe的诊断功能和cdd文件
内容: UDS诊断学习 CDD文件配置 诊断功能 一.UDS诊断学习: ①.UDS请求命令4种构成方式: SIDSID+SF(Sub-function)SID+DID(Data Identifier) ...
- 智能合约HardHat框架环境的搭建
1.首先创建一个npm项目 PS C:\Users\lcds\blockchainprojects> mkdir hardhatcontract PS C:\Users\lcds\blockch ...
- tvm-多线程代码生成和运行
本文链接 https://www.cnblogs.com/wanger-sjtu/p/16818492.html 调用链 tvm搜索算子在需要多线程运行的算子,是在codegen阶段时插入TVMBac ...
- rabbitmq安装部署和常用命令
python操作rabbitmq rabbitmq实现可以使用java或者springboot的封装方法,自己创建实现,也可以使用中间件实现,相对于自建,使用rabbitmq应用场景及使用更系统安全. ...