本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000

作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

Description

给定n条平行线段,每条线段的价值是它的长度。现在用一条直线贯穿最大价值的线段,求最大的价值。
N<=2000。
 

Input

第一行一个数n表示线段数。家下来n行每行三个数x0,x1和y,表示线段(x0,y)-(x1,y)。
|x0|,|x1|<=10^6,1<=y<=10^6。线段无交。

Output

输出最大的价值。

Sample Input

1
-100 180 20

Sample Output

280

正解:结论+搜索

解题报告:

  这道题很有意思,我开始也没想到那个结论。

  这道题有一个很有用的结论:最优解的直线必然是经过了某一条线段的端点。仔细想想就会发现其实很有道理,或者说显然?

  这样就很方便了,因为$n$只有$2000$,所以 $n^2$ 暴力即可。我不妨枚举一个端点,作为直线必然经过的那个端点,那么对于经过这个端点的直线,如果我想经过别的线段,显然可以通过作出别的线段的两个端点到这个点的斜率来得到一个可行的范围。假如直线斜率在这个范围内,这条线段就会产生贡献。我们得到了一个可行的做法:得到所有线段关于这个点的斜率得到若干个区间,之后扫一遍即可知道在什么时候能取到最大值了。但是有一些需要注意的地方:斜率有可能不存在,而且可能接近无限大。考虑到直线不能平行于线段,即斜率不能为$0$,我们不妨用斜率的倒数来维护上述操作,很容易发现,对于这道题来说,会减少很多计算而且方便很多,精度误差也小很多。

//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long LL;
const int MAXN = 2011;
const double eps = 1e-8;
int n,ans,tot;
struct node{int x0,x1,y,len;}a[MAXN];
struct seq{double k;int type;}b[MAXN*2];
inline bool cmp(seq q,seq qq){ return q.k<qq.k; }
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
} inline void solve(double x,double y){
int cnt=0;
for(int i=1;i<=n;i++) {
if(a[i].y==y) continue;
b[++cnt].k=(a[i].x0-x)/(a[i].y-y);
b[++cnt].k=(a[i].x1-x)/(a[i].y-y);
if(b[cnt].k>b[cnt-1].k) {
b[cnt-1].type=a[i].len;
b[cnt].type=-a[i].len;
b[cnt].k+=eps;
}
else{
b[cnt-1].type=-a[i].len;
b[cnt].type=a[i].len;
b[cnt-1].k+=eps;
}
}
sort(b+1,b+cnt+1,cmp);
for(int i=1;i<=cnt;i++) {
tot+=b[i].type;
if(tot>ans) ans=tot;
}
} inline void work(){
n=getint(); ans=0;
for(int i=1;i<=n;i++) {
a[i].x0=getint(),a[i].x1=getint(),a[i].y=getint();
if(a[i].x0>a[i].x1) swap(a[i].x0,a[i].x1);
a[i].len=a[i].x1-a[i].x0;
}
for(int i=1;i<=n;i++) {
tot=a[i].len; if(tot>ans) ans=tot;
solve(a[i].x0,a[i].y);
tot=a[i].len;
solve(a[i].x1,a[i].y);
}
printf("%d",ans);
} int main()
{
work();
return 0;
}

  

BZOJ4614 [Wf2016]Oil的更多相关文章

  1. BZOJ4614/UVA1742 Oil 计算几何

    传送门 题意:在平面直角坐标系中给出$N$条互不相交的.与$x$轴平行.且在$x$轴上方的线段,每一条线段的价值为其长度.求一条不与$x$轴平行的直线,使得与这条直线相交的线段的价值之和最大,求出这个 ...

  2. BZOJ 4614[Wf2016]Oil

    权限题鸭qwq 首先可以知道最优答案选出来的直线一定可以经过某条线段左端点,如果这条直线没有过左端点,可以通过平移和旋转等操作达到.所以可以枚举这条直线过了哪条线段的左端点,那么对于其他线段,能对答案 ...

  3. BZOJ4614 UVA1742 Oil 计算几何+搜索+扫描线

    正解:计算几何+搜索+扫描线 解题报告: 传送门 哇我是真的觉得这题很妙了!各个方面都很妙啊... 首先有一个很重要的结论:最优线一定可以通过各种变换(旋转/平移)使得经过一条线段的左端点(...并不 ...

  4. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  5. BZOJ 4614 【Wf2016】 Oil

    题目链接:Oil 感觉同时几线作战有点吃不消啊-- 这道题有一个显然的结论,那就是最优的直线一定过某条线段的端点. 仔细想想很有道理.如果最终的直线没有过线段的端点的话,那么这条直线就一定可以平移,直 ...

  6. Oil Deposits

    Oil Deposits Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tota ...

  7. Oil Deposits(dfs)

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...

  8. 2016HUAS暑假集训训练题 G - Oil Deposits

    Description The GeoSurvComp geologic survey company is responsible for detecting underground oil dep ...

  9. uva 572 oil deposits——yhx

    Oil Deposits  The GeoSurvComp geologic survey company is responsible for detecting underground oil d ...

随机推荐

  1. 一个页面实例化两个ueditor编辑器,同样的出生却有不同的命运

    今天遇到一个比较怪异的问题,有一项目需要在同一个页面上展现两个ueditor编辑器,在展现时并不任何问题,但当点击了“保存”按钮时就出错了,有其中一个ueditor在asp.net中无法获取编辑器的值 ...

  2. ORACLE表空间管理维护

    1:表空间概念 在ORACLE数据库中,所有数据从逻辑结构上看都是存放在表空间当中,当然表空间下还有段.区.块等逻辑结构.从物理结构上看是放在数据文件中.一个表空间可由多个数据文件组成. 如下图所示, ...

  3. MS SQL 日常维护管理常用脚本(二)

    监控数据库运行 下面是整理.收集监控数据库运行的一些常用脚本,也是MS SQL 日常维护管理常用脚本(一)的续集,欢迎大家补充.提意见. 查看数据库登录名信息   Code Snippet SELEC ...

  4. Linux IPC socket 广播,组播

    getsockopt()/setsockopt() //获得sockfd指向的socket的属性 int getsockopt(int sockfd, int level, int optname, ...

  5. 网络抓包工具-Wireshark学习资料

    wireshark一个非常牛逼的网络抓包工具.转载一系列博文 一站式学习Wireshark(一):Wireshark基本用法 一站式学习Wireshark(二):应用Wireshark观察基本网络协议 ...

  6. jquery2源码分析系列

    学习jquery的源码对于提高前端的能力很有帮助,下面的系列是我在网上看到的对jquery2的源码的分析.等有时间了好好研究下.我们知道jquery2开始就不支持IE6-8了,从jquery2的源码中 ...

  7. Release Management 安装 之 集成TFS

    集成TFS时需要在TFS服务器执行 tfssecurity /g+ "Team Foundation Service Accounts" n:ALM\rmtfsint ALLOW ...

  8. ios合并静态库

    lipo -create SQY/iOS/iphoneos/libGamePlusAPI.a SQY/iOS/iphonesimulator/libGamePlusAPI.a -output SQY/ ...

  9. oracle 错误代码大全

    oracle错误代码大全(超详细)   ORA-00001: 违反唯一约束条件 (.) ORA-00017: 请求会话以设置跟踪事件 ORA-00018: 超出最大会话数 ORA-00019: 超出最 ...

  10. cin

    cin 是预定义的标准输入流对象,cin 用来接收字符串时,遇“空格”.“TAP”.“回车”时都会结束.