C#异步编程是怎么回事(番外)
在上一篇通信协议碰到了多线程,阻塞、非阻塞、锁、信号量...,会碰到很多问题。因此我感觉很有必要研究多线程
与异步编程
。
首先以一个例子开始
我说明一下这个例子。
这是一个演示异步编程的例子。
- 输入job [name],在一个同步的
Main
方法中,以一发即忘
的方式调用异步方法StartJob()
。 - 输入time,调用同步方法
PrintCurrentTime()
输出时间。 - 输出都带上线程ID,便于观察。
可以看到,主线程不会阻塞。主线程在同步方法中使用一发即忘
的方式调用异步方法时,在异步方法中碰到阻塞时,主线程返回同步方法中继续执行。而异步方法在另一个线程中继续执行。
程序如下
internal class Program
{
static void Main(string[] args)
{
while (true)
{
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Enter 'time' to get current time or 'job [name]' to start a job:");
string input = Console.ReadLine();
if (input.StartsWith("time"))
{
// 输出当前时间
PrintCurrentTime();
}
else if (input.StartsWith("job"))
{
// 启动一个异步任务,执行指定的工作
string[] parts = input.Split(new char[] { ' ' }, 2);
string jobName = parts.Length > 1 ? parts[1] : string.Empty;
StartJob(jobName);
}
else
{
Console.WriteLine("Invalid input. Please try again.");
}
}
}
static void PrintCurrentTime()
{
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Current time: {DateTime.Now}");
}
static async void StartJob(string jobName)
{
// 获取主线程的线程 ID
int mainThreadId = Thread.CurrentThread.ManagedThreadId;
// 检查是否在主线程上
bool onMainThread = Thread.CurrentThread.ManagedThreadId == mainThreadId;
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Starting job '{jobName}'. This will take 10 seconds...");
// 输出主线程上下文移动情况
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Main thread context moved to new thread: {(!onMainThread)}");
await Task.Delay(10000); // 模拟任务需要10秒钟完成
// 输出任务完成信息及上下文移动情况
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Job '{jobName}' completed. Main thread context moved to new thread: {(!onMainThread)}");
}
}
上下文流转
一个方法从一个线程代码栈被切换,或者说被剪切到另一个线程代码栈上去,可以称为上下文流转
。
这对于理解异步编程是一个重要的点。
但由于上面的程序缺少必要变量,我需要在不同位置加几个变量,来展示上下文确实被移动了。
static async void StartJob(string jobName)
{
int mainThreadId = Thread.CurrentThread.ManagedThreadId;
// 检查是否在主线程上
bool onMainThread = Thread.CurrentThread.ManagedThreadId == mainThreadId;
...
}
可以看到onMainThread
一直为False,这个变量从线程1移动到线程5。
而且bool是值类型,在栈上面,这说明StartJob
这段代码确实移动到线程5的栈上面去了。(每个线程都有一个调用栈)
使用VS调试窗口监视线程
想要再进一步,更清晰的话说明上下文流转的话,那就得监视这两个线程栈的内容了。万幸的是 vs提供了这个功能,调试 > 窗口 > 并行堆栈。
命中断点时,
StartJob
方法在主线程24876上
10秒后再次命中,
StartJob
方法跑到了任务线程上。而主线程现在在Main函数的Console.ReadLine()
那里阻塞
代码阻塞与线程阻塞
在上面的例子中我们引出两种现象,代码阻塞与线程阻塞。
代码阻塞时,线程不一定阻塞,原线程没有阻塞,去执行别的代码了,而由新线程接手当前上下文和调用栈阻塞在这里,比如这里的await Task.Delay(10000)
。
代码阻塞时线程也可能阻塞,比如lock(lockObj)
和Console.ReadLine()
。
为了方便,我们姑且这样命名吧- 代码阻塞时,线程不阻塞称之为等待await
- 代码阻塞时,线程也阻塞称之为阻塞block
为什么有两个箭头
这里为什么有线程24666和27548两个NET TP Worker
(.NET Thread Pool (TP) Worker)?据chatGPT解释,Delay
语句在线程池中找了一个线程去执行,一旦延迟时间到达,StartJob
会在其中一个线程池线程上恢复执行。计时是一个线程,恢复上下文是另一个线程。Delay
就代表了我们的那个耗时线程(不是异步方法所在线程)。
既然有两个线程的联动,其中就出现了一些熟悉的东西。信号量Semaphore
,一次性信号量的消耗TrySetResult
,但详细过程我还不清楚。
MSDN
上的例子也是这样
以同步的方式进行异步编程
原来把异步方法的上下文移动到新线程N,保证主线程不阻塞(脱离主线程U)。然后N用第三个线程C执行耗时任务,最后把C结果给位于N中的上下文。
站在代码编写者的角度,不特意去看线程的话,就不会注意到异步方法的上下文从一个线程跑到另一个线程上去了。这就是所谓的以同步的方式进行异步编程。
那么线程N的执行就明晰了。先保存上下文,然后启用新线程C进行耗时任务,并阻塞。等C使用信号量或其他什么通知N时,N再根据C的结果继续执行。
可以这样总结
async
和await
是一个语法糖。- 以同步的方式进行异步编程的方式是使用语法糖,以同步的方式书写代码,然后编译成适当的异步的实现。
我列出几种可能的异步的实现
1. 异步状态机
- 异步状态机是C#编译
async
语法糖的实现方式 - 异步方法
StartJob
将会被编译成一个同步方法StartJobAsync
和一个状态机StartJobAsyncMachine
。 - 状态机流转上下文的方式是将新线程用到的变量提升为字段,储存于可被线程共享的进程堆中
- MoveNext方法可以被不同线程执行,这是关键
点击查看代码
internal class Program
{
...
internal static void StartJobAsync(string jobName)
{
StartJobAsyncMachine stateMachine = new StartJobAsyncMachine();
stateMachine.builder = AsyncVoidMethodBuilder.Create();
stateMachine.jobName = jobName;
stateMachine.state = -1;
stateMachine.builder.Start(ref stateMachine);
}
public sealed class StartJobAsyncMachine : IAsyncStateMachine
{
public int state;
public AsyncVoidMethodBuilder builder;
private TaskAwaiter taskAwaiter;
//形参会编译成public字段
public string jobName;
//被新线程使用的局部变量会编译成private字段
private bool onMainThread;
private void MoveNext()
{
int num = state;
try
{
TaskAwaiter awaiter;
if (num != 0)
{
// 获取主线程的线程 ID
int mainThreadId = Thread.CurrentThread.ManagedThreadId;
// 检查是否在主线程上
onMainThread = Thread.CurrentThread.ManagedThreadId == mainThreadId;
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Starting job '{jobName}'. This will take 10 seconds...");
// 输出主线程上下文移动情况
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Main thread context moved to new thread: {(!onMainThread)}");
awaiter = Task.Delay(10000).GetAwaiter();
if (!awaiter.IsCompleted)
{
num = (state = 0);
taskAwaiter = awaiter;
StartJobAsyncMachine stateMachine = this;
builder.AwaitUnsafeOnCompleted(ref awaiter, ref stateMachine);
return;
}
}
else
{
awaiter = taskAwaiter;
taskAwaiter = default(TaskAwaiter);
num = (state = -1);
}
awaiter.GetResult();
// 输出任务完成信息及上下文移动情况
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Job '{jobName}' completed. Main thread context moved to new thread: {(!onMainThread)}");
}
catch (Exception exception)
{
state = -2;
builder.SetException(exception);
return;
}
state = -2;
builder.SetResult();
}
void IAsyncStateMachine.MoveNext()
{
this.MoveNext();
}
private void SetStateMachine(IAsyncStateMachine stateMachine)
{
}
void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine)
{
this.SetStateMachine(stateMachine);
}
}
}
StartJobAsync
的调用和原方法等效。我在Main
中在加一种指令jobMachine
调用StartJobAsync
。原来的改为job空格
else if (input.StartsWith("jobMachine "))
{
// 启动一个异步任务,执行指定的工作
string[] parts = input.Split(new char[] { ' ' }, 2);
string jobName = parts.Length > 1 ? parts[1] : string.Empty;
StartJobAsync(jobName);
}
2. 协程
这种方法到底叫协程还是异步迭代器,我不太分得清,但目的是能够达到的,我暂且就叫做协程好了。
虽然这种做法就像脱裤子放屁,因为协程最后也会编译成状态机。这个例子主要是为了演示直观。
理论上,C#中的异步/等待(async/await)语法并不是直接编译成协程的,而是由编译器生成状态机(state machine)来管理异步操作。但是,我们可以通过理解协程的工作原理以及C#异步/等待模型的特性,来描绘一种可能的编译结果。
这里我写了一个基于协程的异步的实现。效果和原来的等同。
- 原理
和状态机实现基本一样。对于每个async
方法生成一个协程。而且在异步方法嵌套时,那么async
方法内部的async
方法在编译时就不需要开一个新线程了。要不然得多少线程。
internal class Program
{
static void Main(string[] args)
{
while (true)
{
...
else if (input.StartsWith("jobCorotine "))
{
// 启动一个异步任务,执行指定的工作
string[] parts = input.Split(new char[] { ' ' }, 2);
string jobName = parts.Length > 1 ? parts[1] : string.Empty;
StartJobAsync_2(jobName);
}
...
}
}
#region 异步协程
static void StartJobAsync_2(string jobName)
{
StartJobAsyncCorotine startJobCorotine = new StartJobAsyncCorotine();
startJobCorotine.jobName = jobName;
var enumerator = startJobCorotine.DelayedOperations();
var iterator = enumerator.GetEnumerator();
bool next = false;
while (true)
{
next = iterator.MoveNext();
if (!iterator.Current.IsCompleted)
{
//异步方法中存在耗时任务,切换到新线程
break;
}
next = false;
}
if (next == false)
{
return;
}
//异步方法存在耗时任务,切换上下文到新线程
Task.Run(() =>
{
do
{
if (!iterator.Current.IsCompleted)
{
//创建耗时任务线程进行耗时任务
Task.Run(() =>
{
iterator.Current.GetResult();
}).Wait();
}
}
while (iterator.MoveNext());
});
}
public sealed class StartJobAsyncCorotine
{
//形参因为需要运行时赋值,只能写成字段的形式
public string jobName;
public int Count = 1;
public IEnumerable<TaskAwaiter> DelayedOperations()
{
TaskAwaiter awaiter1;
// 获取主线程的线程 ID
int mainThreadId = Thread.CurrentThread.ManagedThreadId;
// 检查是否在主线程上
bool onMainThread = Thread.CurrentThread.ManagedThreadId == mainThreadId;
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Starting job '{jobName}'. This will take 10 seconds...");
// 输出主线程上下文移动情况
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Main thread context moved to new thread: {(!onMainThread)}");
awaiter1 = Task.Delay(10000).GetAwaiter(); // 模拟任务需要10秒钟完成
//出去判断这是否是耗时任务以切换线程
yield return awaiter1;
// 输出任务完成信息及上下文移动情况
Console.WriteLine($"(Thread ID: {Thread.CurrentThread.ManagedThreadId}) Job '{jobName}' completed. Main thread context moved to new thread: {(!onMainThread)}");
}
}
#endregion
}
- 效果确实和原来一样
3. 闭包
这真不需要多说,通过闭包进行捕获上下文真的是太常见了,Ajax中用到吐
带返回值的上下文流转
StartJob
是没有返回值的,假如我们需要一个返回值呢,比如一个bool,用于判断接下来的执行流程。
调用异步方法StartJob
的同步方法Main
之间存在着绝对的分界线——两个线程。同步方法不会被交给异步方法中的那个新线程,没法在同步方法中以同步的方式进行异步编程
。
唯一的一点看头是,至少Task
还给我们留下了一个回调ContinueWith
可用。但条件允许的话,何不把回调的内容写在异步方法内部呢?
C#异步编程是怎么回事(番外)的更多相关文章
- python之爬虫--番外篇(一)进程,线程的初步了解
整理这番外篇的原因是希望能够让爬虫的朋友更加理解这块内容,因为爬虫爬取数据可能很简单,但是如何高效持久的爬,利用进程,线程,以及异步IO,其实很多人和我一样,故整理此系列番外篇 一.进程 程序并不能单 ...
- 从TCP到Socket,彻底理解网络编程是怎么回事
进行程序开发的同学,无论Web前端开发.Web后端开发,还是搜索引擎和大数据,几乎所有的开发领域都会涉及到网络编程.比如我们进行Web服务端开发,除了Web协议本身依赖网络外,通常还需要连接数据库,而 ...
- #3使用html+css+js制作网页 番外篇 使用python flask 框架 (I)
#3使用html+css+js制作网页 番外篇 使用python flask 框架(I 第一部) 0. 本系列教程 1. 准备 a.python b. flask c. flask 环境安装 d. f ...
- C#与C++的发展历程第三 - C#5.0异步编程巅峰
系列文章目录 1. C#与C++的发展历程第一 - 由C#3.0起 2. C#与C++的发展历程第二 - C#4.0再接再厉 3. C#与C++的发展历程第三 - C#5.0异步编程的巅峰 C#5.0 ...
- 关于如何提高Web服务端并发效率的异步编程技术
最近我研究技术的一个重点是java的多线程开发,在我早期学习java的时候,很多书上把java的多线程开发标榜为简单易用,这个简单易用是以C语言作为参照的,不过我也没有使用过C语言开发过多线程,我只知 ...
- 异步编程系列第05章 Await究竟做了什么?
p { display: block; margin: 3px 0 0 0; } --> 写在前面 在学异步,有位园友推荐了<async in C#5.0>,没找到中文版,恰巧也想提 ...
- 异步编程系列06章 以Task为基础的异步模式(TAP)
p { display: block; margin: 3px 0 0 0; } --> 写在前面 在学异步,有位园友推荐了<async in C#5.0>,没找到中文版,恰巧也想提 ...
- C#基础系列——异步编程初探:async和await
前言:前面有篇从应用层面上面介绍了下多线程的几种用法,有博友就说到了async, await等新语法.确实,没有异步的多线程是单调的.乏味的,async和await是出现在C#5.0之后,它的出现给了 ...
- 给深度学习入门者的Python快速教程 - 番外篇之Python-OpenCV
这次博客园的排版彻底残了..高清版请移步: https://zhuanlan.zhihu.com/p/24425116 本篇是前面两篇教程: 给深度学习入门者的Python快速教程 - 基础篇 给深度 ...
- 可视化(番外篇)——SWT总结
本篇主要介绍如何在SWT下构建一个应用,如何安装SWT Designer并破解已进行SWT的可视化编程,Display以及Shell为何物.有何用,SWT中的常用组件.面板容器以及事件模型等. 1.可 ...
随机推荐
- Java实现银行存取款
"感谢您阅读本篇博客!如果您觉得本文对您有所帮助或启发,请不吝点赞和分享给更多的朋友.您的支持是我持续创作的动力,也欢迎留言交流,让我们一起探讨技术,共同成长!谢谢!" 代码 `` ...
- 基于 K8s 的交付难题退退退!| 独家交付秘籍(第三回)
简介: 经过仔细研究,我们发现秘籍中提到许多帮助解决交付问题的招式,而其中一个让我们印象很深,是关于在原有社区版容器底座 Kubernetes(以下简称 K8s)的基础上,对容器底座进行改进,可更好的 ...
- KubeDL HostNetwork:加速分布式训练通信效率
简介:ubeDL 为分布式训练作业带来了 HostNetwork 网络模式,支持计算节点之间通过宿主机网络相互通信以提升网络性能,同时适应 RDMA/SCC 等新型高性能数据中心架构的网络环境,此外 ...
- 如何开发 Node.js Native Add-on?
简介: 来一起为 Node.js 的 add-on 生态做贡献吧~ 作者 | 吴成忠(昭朗) 这篇文章是由 Chengzhong Wu (@legendecas),Gabriel Schulhof ( ...
- dotnet 在 UOS 统信系统上运行 UNO 程序输入时闪烁黑屏问题
本文记录我在虚拟机内安装了 UOS 统信系统,运行 UNO 的基于 Skia 的 Gtk 应用程序时,在输入的过程中不断窗口闪黑问题 本质上说这个问题和 UNO 毫无关系,这是一个 OpenGL 硬件 ...
- dotnet 通过 DockerfileContext 解决项目放在里层文件夹导致 VisualStudio 构建失败
本文告诉大家,如何解决 csproj 项目文件放入到里层的文件夹,不放在 sln 所在文件夹的第一层子文件夹,导致 VisualStudio 2022 在构建 docker 映像提示找不到文件的问题 ...
- LLM优化:开源星火13B显卡及内存占用优化
1. 背景 本qiang~这两天接了一个任务,部署几个开源的模型,并且将本地经过全量微调的模型与开源模型做一个效果对比. 部署的开源模型包括:星火13B,Baichuan2-13B, ChatGLM6 ...
- 羽夏闲谈——TeeWorlds 中文问题
不久前 削微寒 园友发布了一篇博文 误入 GitHub 游戏区,意外地收获颇丰 ,看到了一个游戏 TeeWorlds .有一说一挺好玩的,下面是那个博客的原图: 官方的下载连接:https:/ ...
- WEB服务与NGINX(10)-NGINX访问控制功能
目录 1.NGINX访问控制功能 1.1 基于ip地址的访问控制 1.2 基于用户名密码的认证 1.NGINX访问控制功能 nginx的访问控制有两种方式: 基于ip进行限制,由ngx_http_ac ...
- LocalDateTime 时间偏移量的处理
一.代码处理块 // 当前系统时间两年后的时间 LocalDateTime expirationTime = LocalDateTimeUtil.offset(LocalDateTime.now(), ...