无向连通图求割点(tarjan算法去掉改割点剩下的联通分量数目)
Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 3603 | Accepted: 1213 |
Description
not enough power in one area, while there is a large surplus in the rest of the country.
ACM++ has therefore decided to connect the networks of some of the plants together. At least in the first stage, there is no need to connect all plants to a single network, but on the other hand it may pay up to create redundant connections on critical places
- i.e. the network may contain cycles. Various plans for the connections were proposed, and the complicated phase of evaluation of them has begun.
One of the criteria that has to be taken into account is the reliability of the created network. To evaluate it, we assume that the worst event that can happen is a malfunction in one of the joining points at the power plants, which might cause the network
to split into several parts. While each of these parts could still work, each of them would have to cope with the problems, so it is essential to minimize the number of parts into which the network will split due to removal of one of the joining points.
Your task is to write a software that would help evaluating this risk. Your program is given a description of the network, and it should determine the maximum number of non-connected parts from that the network may consist after removal of one of the joining
points (not counting the removed joining point itself).
Input
The first line of each instance contains two integers 1 <= P <= 10 000 and C >= 0 separated by a single space. P is the number of power plants. The power plants have assigned integers between 0 and P - 1. C is the number of connections. The following C lines
of the instance describe the connections. Each of the lines contains two integers 0 <= p1, p2 < P separated by a single space, meaning that plants with numbers p1 and p2 are connected. Each connection is described exactly once and there is at most one connection
between every two plants.
The instances follow each other immediately, without any separator. The input is terminated by a line containing two zeros.
Output
one of the joining points at power plants in the instance.
Sample Input
3 3
0 1
0 2
2 1
4 2
0 1
2 3
3 1
1 0
0 0
Sample Output
1
2
2
题目大题:
求去掉某个点以及与其相连的边,最多可以形成多少个连通分量:
tarjan算法求割点
程序:
#include"string.h"
#include"stdio.h"
#include"iostream"
#include"queue"
#include"stack"
#define M 10009
#include"stdlib.h"
#include"math.h"
#define inf 99999999
using namespace std;
struct node
{
int u,v,next;
}edge[M*20];
int t,head[M],low[M],dfn[M],index,cut[M],sum,root,s,num[M];
//cut[]可以记录去掉该节点后导致形成多少个连通分量
//num[]可以记录以改点为根的连通图有多少个元素
void init()
{
t=0;
memset(head,-1,sizeof(head));
}
void add(int u,int v)
{
edge[t].u=u;
edge[t].v=v;
edge[t].next=head[u];
head[u]=t++;
}
void tarjan(int u,int fa)
{
s++;
dfn[u]=low[u]=++index;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].v;
if(!dfn[v])
{
tarjan(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u])
cut[u]++;
}
else
low[u]=min(low[u],dfn[v]);
}
if(fa<0)
cut[u]--;
}
void solve(int n)
{
index=sum=0;
memset(dfn,0,sizeof(dfn));
memset(cut,0,sizeof(dfn));
for(int i=1;i<=n;i++)
if(!dfn[i])
{
sum++;
s=0;
root=i;
tarjan(i,-1);
num[i]=s;
} }
int main()
{
int a,b,n,m,i;
while(scanf("%d%d",&n,&m),n||m)
{
init();
while(m--)
{
scanf("%d%d",&a,&b);
a++;
b++;
add(a,b);
add(b,a);
}
solve(n);
int ans=0;
int tep=-1;
for(i=1;i<=n;i++)
{
if(cut[i])
{
if(ans<cut[i]+1)
{
ans=cut[i]+1;
tep=i;
}
}
}
//注意:当所有联通分量的元素个数都是1的时候去掉一个元素则联通分量减小
if(tep==-1)
{
int flag=0;
for(i=1;i<=n;i++)
{
if(num[i]>1)
flag++;
}
if(flag)
printf("%d\n",sum);
else
printf("%d\n",sum-1);
}
else
printf("%d\n",ans+sum-1);
}
}
无向连通图求割点(tarjan算法去掉改割点剩下的联通分量数目)的更多相关文章
- Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载)
Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2 ...
- 图连通性【tarjan点双连通分量、边双联通分量】【无向图】
根据 李煜东大牛:图连通性若干拓展问题探讨 ppt学习. 有割点不一定有割边,有割边不一定有割点. 理解low[u]的定义很重要. 1.无向图求割点.点双联通分量: 如果对一条边(x,y),如果low ...
- 洛谷3388 【模板】割点 tarjan算法
题目描述 给出一个n个点,m条边的无向图,求图的割点. 关于割点 在无向连通图中,如果将其中一个点以及所有连接该点的边去掉,图就不再连通,那么这个点就叫做割点(cut vertex / articul ...
- 割点 —— Tarjan 算法
由于对于这一块掌握的十分不好,所以在昨天做题的过程中一直困扰着我,好不容易搞懂了,写个小总结吧 qwq~ 割点 概念 在无向连通图中,如果将其中一个点以及所有连接该点的边去掉,图就不再连通,那么这个点 ...
- 『Tarjan算法 无向图的割点与割边』
无向图的割点与割边 定义:给定无相连通图\(G=(V,E)\) 若对于\(x \in V\),从图中删去节点\(x\)以及所有与\(x\)关联的边后,\(G\)分裂为两个或以上不连通的子图,则称\(x ...
- ZOJ 2588 Burning Bridges(无向连通图求割边)
题目地址:ZOJ 2588 由于数组开小了而TLE了..这题就是一个求无向连通图最小割边.仅仅要推断dfn[u]是否<low[v],由于low指的当前所能回到的祖先的最小标号,增加low[v]大 ...
- ZOJ2588:Burning Bridges(无向连通图求割边)
题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1588 吐下槽,不得不说ZOJ好坑,模版题做了一个多小时. 题意:* ...
- Tarjan 算法求 LCA / Tarjan 算法求强连通分量
[时光蒸汽喵带你做专题]最近公共祖先 LCA (Lowest Common Ancestors)_哔哩哔哩 (゜-゜)つロ 干杯~-bilibili tarjan LCA - YouTube Tarj ...
- 有向图的强联通tarjan算法(判断是否为强联通模板)(hdu1269)
hdu1269 迷宫城堡 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tot ...
随机推荐
- e595. Drawing an Image
See also e575 The Quintessential Drawing Program and e594 Reading an Image or Icon from a File. publ ...
- php -- 检查是否存在
1.检查变量是否存在:isset() 2.检查常量是否存在:defined() 3.检查方法是否存在:function_exists() 4.检查类是否存在:class_exists()
- UART通信协议
第一部分: UART使用的是 异步,串行通信. 串行通信是指利用一条传输线将资料一位位地顺序传送.特点是通信线路简单,利用简单的线缆就可实现通信,降低成本,适用于远距离通信,但传输速度慢的应用场 ...
- 云计算中auto-scaling 最早的来源
什么是弹性?首先,整合计算资源,将计算资源池化,通过虚拟机按需使用计算资源;其次,按量计费,让用户能够根据使用量按月按时甚至按秒来进行付费. 不过,光有了这两条还不够.为什么?我举个例子: 很多做运维 ...
- mac下安装apc并且使用
1.到网站下载对应PHP版本apc压缩包http://git.php.net/?p=pecl/caching/apc.git;a=commit;h=08e2ce7ab5f59aea483d877e2b ...
- 完美解决jQuery符号$与其他javascript 库、框架冲突的问题
目前有大量的 javascript 开发框架,其中有一部分使用 $ 作为调用符号,这可能导致相互之间的冲突,而 jQuery 为解决这个问题,可以在 jQuery 导入时放弃 $ 使用权,届时 $ 则 ...
- 查看当前mysql数据库实例中,支持的字符集有哪些,或者是否支持某个特定字符集
需求描述: 查看当前mysql实例中支持哪些字符集,过滤特定的字符集 操作过程: 1.通过show character set来进行查看 mysql> show character set; + ...
- linux系统中,tee命令的使用
需求描述: 今天在看nginx内容的过程,遇到了tee这个命令,所以查询了下,在这里记录下使用方法. 操作过程: 1.执行以下的命令 [root@testvm ~]# uname -n | tee h ...
- mybatis由浅入深day01_ 4.11总结(parameterType_resultType_#{}和${}_selectOne和selectList_mybatis和hibernate本质区别和应用场景)
4.11 总结 4.11.1 parameterType 在映射文件中通过parameterType指定输入参数的类型.mybatis通过ognl从输入对象中获取参数值拼接在sql中. 4.11.2 ...
- Python 插件安装
0.下载Python包文件后,解压缩: 1.cd 到 插件解压缩目录,里面有setup.py的文件: 2.定位到当前目录: 3.执行:python setup.py install; 4.结束安装. ...