SoftMax多分类器原理及代码理解
关于多分类
我们常见的逻辑回归、SVM等常用于解决二分类问题,对于多分类问题,比如识别手写数字,它就需要10个分类,同样也可以用逻辑回归或SVM,只是需要多个二分类来组成多分类,但这里讨论另外一种方式来解决多分类——SoftMax。
SoftMax模型
Softmax回归模型是logistic回归模型在多分类问题上的推广,当分类数为2的时候会退化为Logistic分类。.在多分类问题中,类标签 可以取两个以上的值。 Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字。Softmax回归是有监督的。
,,由于logistic回归是针对二分类问题的,因此类标记 。
假设函数如下:

训练模型参数 ,使其能够最小化代价函数:

对于给定的测试输入 ,用假设函数针对每一个类别
估算出概率值
,即,估计
的每一种分类结果出现的概率。假设函数将要输出 一个
维的向量来表示这
个估计的概率值。假设函数
形式如下:


代价函数
上述公式是logistic回归代价函数的推广。logistic回归代价函数可以改为:

Softmax代价函数与logistic 代价函数在形式上非常类似,只是在Softmax损失函数中对类标记的 个可能值进行了累加。注意在Softmax回归中将
分类为类别
的概率为:

一般使用梯度下降优化算法来最小化代价函数,而其中会涉及到偏导数,即,则对求偏导,得到代价函数对参数权重的梯度就可以优化了。
例子
从下图看,神经网络中包含了输入层,然后通过两个特征层处理,最后通过softmax分析器就能得到不同条件下的概率,这里需要分成三个类别,最终会得到y=0、y=1、y=2的概率值。

继续看下面的图,三个输入通过softmax后得到一个数组[0.05 , 0.10 , 0.85],这就是soft的功能。

计算过程直接看下图,其中即为,三个输入的值分别为3、1、-3,的值为20、2.7、0.05,再分别除以累加和得到最终的概率值,0.88、0.12、0。
可以看到它有多个值,所有值加起来刚好等于1,每个输出都映射到了0到1区间,可以看成是概率问题。
为多个输入,训练其实就是为了逼近最佳的。
使用场景
在多分类场景中可以用softmax也可以用多个二分类器组合成多分类,比如多个逻辑分类器或SVM分类器等等。该使用softmax还是组合分类器,主要看分类的类别是否互斥,如果互斥则用softmax,如果不是互斥的则使用组合分类器。
参考文献:
https://www.cnblogs.com/hellcat/p/7220536.html?utm_source=itdadao&utm_medium=referral
SoftMax多分类器原理及代码理解的更多相关文章
- DeepLearning tutorial(3)MLP多层感知机原理简介+代码详解
本文介绍多层感知机算法,特别是详细解读其代码实现,基于python theano,代码来自:Multilayer Perceptron,如果你想详细了解多层感知机算法,可以参考:UFLDL教程,或者参 ...
- 免费的Lucene 原理与代码分析完整版下载
Lucene是一个基于Java的高效的全文检索库.那么什么是全文检索,为什么需要全文检索?目前人们生活中出现的数据总的来说分为两类:结构化数据和非结构化数据.很容易理解,结构化数据是有固定格式和结构的 ...
- 机器学习之KNN原理与代码实现
KNN原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9670187.html 1. KNN原理 K ...
- 机器学习之AdaBoost原理与代码实现
AdaBoost原理与代码实现 本文系作者原创,转载请注明出处: https://www.cnblogs.com/further-further-further/p/9642899.html 基本思路 ...
- 机器学习之决策树三-CART原理与代码实现
决策树系列三—CART原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9482885.html ID ...
- 机器学习之决策树二-C4.5原理与代码实现
决策树之系列二—C4.5原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9435712.html I ...
- 机器学习之决策树一-ID3原理与代码实现
决策树之系列一ID3原理与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/9429257.html 应用实 ...
- linux io的cfq代码理解
内核版本: 3.10内核. CFQ,即Completely Fair Queueing绝对公平调度器,原理是基于时间片的角度去保证公平,其实如果一台设备既有单队列,又有多队列,既有快速的NVME,又有 ...
- 基础 | batchnorm原理及代码详解
https://blog.csdn.net/qq_25737169/article/details/79048516 https://www.cnblogs.com/bonelee/p/8528722 ...
随机推荐
- git-【二】本地git操作提交、版本回退
一.创建版本库,提交文件 什么是版本库?版本库又名仓库,英文名repository,你可以简单的理解一个目录,这个目录里面的所有文件都可以被Git管理起来,每个文件的修改,删除,Git都能跟踪,以便任 ...
- POJ3070:Fibonacci(矩阵快速幂模板题)
http://poj.org/problem?id=3070 #include <iostream> #include <string.h> #include <stdl ...
- jq的$(function(){})与window.onload的区别
最近一直在研究jq的源码,书写jq的代码我们通常会包裹在一个$(function(){})函数中,jq的$(function(){})也就是$(document).ready(function(){} ...
- PAT 1057 Stack [难][树状数组]
1057 Stack (30)(30 分) Stack is one of the most fundamental data structures, which is based on the pr ...
- mutex锁住共用线程函数 造成了死锁 ,为什么?
锁住共用的线程函数,为什么出现了死锁的现象,是真的死锁了吗?为什么勒[清晰早点] [逍遥游]# 一般都是用 EnterCriticalSection 和 LeaveCriticalSection 锁住 ...
- Entity Framework Code First在Oracle下的伪实现(转)
为什么要说是伪实现,因为还做不到类似MsSql中那样完全的功能.Oralce中的数据库还是要我们自己手动去创建的.这里,我们舍掉了Model First中的EDMX文件,自己在代码里面写模型与映射关系 ...
- Python tricks(1) -- 动态定义一个新变量
python是动态语言, 无需声明变量即可使用. 传递一个tuple, list或者dict等等方式, 有时候这种方式的使用不是很好. 对于tuple和list来说都是用下标的访问方式(即使用[]), ...
- 【转】微信jssdk录音功能开发记录
转自:http://www.cnblogs.com/liujunyang/p/4962423.html#undefined 0.需求描述 在微信浏览器内打开的页面,制作一个按钮,用户按住按钮后开始录音 ...
- android驱动学习---led实验
======================== 驱动: 内核:android-kernel 2.6.36 (必须对应你的板子上内核,不然会出现insmod错误) 目的:通过android应用层用户 ...
- Maven编译代码的时候跳过单元测试
Maven编译代码的时候跳过单元测试 <properties> <maven.test.skip>true</maven.test.skip> </prope ...