t1网络流

随便建个图就可以了

t2单调队列

分成两组来做

t3dp+高精度

为了不被卡厂用了万进制

纪念又一次ak的更多相关文章

  1. 金山中学 rugular SRM 04 ——纪念我的第一次Ak

    虽然只是一场比较简单的比赛 但奈何我也比较弱啊.... T1 一道计算概率的题目 T SRM 04 描述 给个长度为 n 的数列,每次操作能将数列打乱(RandomShuffle),问在期望下需要多少 ...

  2. 纪念第一次ak。。。

    1.MM的数学作业 [题目大意] 今天,MM在上数学课,数学课的主题是函数.讲完以后老师留了一个家庭作业,让同学们回家思考.题目如下: 定义一个函数,F(x)表示x转成二进制后,二进制中“1”的个数. ...

  3. 【11.9校内测试】【倒计时1天】【ak欢乐赛】【多项式计算模拟】

    然而AK失败了,就是因为这道摸你题:(最后一篇题解了吧?QAQ) Solution 模拟多项式乘法,其中的运算处理很像高精度,不过第$i$位代表的就是$x^i$前面的系数了. 好像去年的时候就讲了表达 ...

  4. //给定N个整数序列{A1,A2,A3...An},求函数f(i,j)=(k=i~j)Ak的求和

    //给定N个整数序列{A1,A2,A3...An},求函数f(i,j)=(k=i~j)Ak的求和 # include<stdio.h> void main() { ,sum1; ]={,- ...

  5. 魅族M8时期写过几个app,纪念一下曾经的自己

    找工作的过程中也看了不少资料和文章,也学着别人弄弄博客,但发现自己临时的行为有点那啥吧..曾经我也写过不少东西,有过自己的一个技术论坛,为当时的魅族M8手机写过一个系列的技术帖子,但因为论坛被我关了, ...

  6. 分享几个.NET WinForm开源组件,纪念逐渐远去的WinForm。。。

    前面3个月的时间内,这些.NET开源项目你知道吗?系列文章已经发表了3篇,共计45个平时接触比较少,曾经默默无闻的.NET开源项目,展示给大家,当然不是每个人都能用得上,但也的确是有些人用了,反响还不 ...

  7. WP7 手机软件纪念 - 稍后读软件

    在本月换机之际,决定写篇博客纪念一下我在 WP7 手机上开发的一个稍后读软件.这个工具开发完成后,两年间,我的 WP7 手机 80% 的用途,都发挥在了它身上. 这个软件其实是一个离线阅读工具,非常类 ...

  8. BZOJ AC800纪念

    貌似没什么好纪念的...QAQQQ 好不容易水到了800还是记录一下好了....不过感觉水这么多题没有意义啊[思考熊] 然后就没有然后了恩 不过我到底是为什么才努力的呢...前途一阵迷茫,根本没有什么 ...

  9. 【特别推荐】10款唯美浪漫的婚礼 & 结婚纪念网站模板

    互联网的重要性不言而喻,如今我们的生活已经完全离不开网络.这里给大家分享一组唯美浪漫的结婚邀请网站以及婚礼请柬网站模板,如果你也正想制作这样的网站,相信这些漂亮的网站模板能够带给你很大的帮助,让你快速 ...

随机推荐

  1. django的request对象和response对象

    概述Django 使用 request 和 response 对象表示系统状态数据..当请求一个页面时,Django创建一个 HttpRequest 对象.该对象包含 request 的元数据. 然后 ...

  2. python sort、sorted高级排序技巧(转)

    add by zhj: 没找到原文.可以按多个维度进行排序,而且可以指定他们的排序方向,如果维度都是数字,排序比较容易,用+/-号就可以 指定排序方向.否则,就调用多次sorted进行排序了,而且要按 ...

  3. day12(jsp指令&内置对象&动作标签、JavaBean、EL表达式&函数库)

    day12 JSP指令 JSP指令概述 JSP指令的格式:<%@指令名 attr1="" attr2="" %>,一般都会把JSP指令放到JSP文件 ...

  4. LVS和nginx反向代理网站架构

    LVS和nginx反向代理网站架构 nginx反向代理和lvs的dr都存在单点,要keepalived做高可用,但是成本高了 f

  5. Oracle数据库的经典问题 snapshot too old是什么原因引起的

    Oracle数据库的经典问题 snapshot too old是什么原因引起的 ORACLE经典错误求解:ORA-1555错误(Snapshot too old ) - ... 书上说是因为the r ...

  6. centos linux系统日常管理复习 CPU物理数逻辑核数,iftop ,iotop ,sar ,ps,netstat ,一网卡多IP,mii-tool 连接,ethtool速率,一个网卡配置多个IP,mii-tool 连接,ethtool速率 ,crontab备份, 第十八节课

    centos linux系统日常管理复习 物理CPU和每颗CPU的逻辑核数,uptime ,w,vmstat,iftop ,iotop ,sar ,ps,netstat ,一个网卡配置多个IP,mii ...

  7. SQL Server分区键列必须是主键一部分

    SQL Server分区键列必须是主键一部分. 必须把分区列包含在主键/唯一约束/唯一索引的键列中. USE tempdb GO -- 测试表 CREATE TABLE dbo.tb( id int, ...

  8. 数据挖掘-聚类分析(Python实现K-Means算法)

    概念: 聚类分析(cluster analysis ):是一组将研究对象分为相对同质的群组(clusters)的统计分析技术.聚类分析也叫分类分析,或者数值分类.聚类的输入是一组未被标记的样本,聚类根 ...

  9. java基础语法 List

    List:元素是有序的(怎么存的就怎么取出来,顺序不会乱),元素可以重复(角标1上有个3,角标2上也可以有个3)因为该集合体系有索引, ArrayList:底层的数据结构使用的是数组结构(数组长度是可 ...

  10. (10)场景转换(Transitions)

    Cocos2d-x最爽的一个特性之一就是提供了在两个不同场景之间直接转换的能力.例如:淡入淡出,放大缩小,旋转,跳动等.从技术上来说,一个场景转换就是在展示并控制一个新场景之前执行一个转换效果. 场景 ...