https://www.lydsy.com/JudgeOnline/problem.php?id=4033

有一棵点数为N的树,树边有边权。给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色。将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益。
问收益最大值是多少。

emmm……人傻自然 $~O(nk)->O(nk^2)~$

参考:https://www.luogu.org/blog/mlystdcall/solution-p3177

设$f[i][j]$表示以$i$为根子树染$j$个点的最大收益……emm脑内想想就知道需要维护一大堆东西,一点也不优美(orz隔壁这么做出来的胡神犇)

参阅题解之后发现我们其实大可以按边算贡献来求总价值!

于是有了这个想法我们很快能列出来一条边,边权为w的贡献应为(边一头的黑点数)*(边另一头的黑点数)*w+(边一头的白点数)*(边一头的白点数)*w

(讲真很难想……没有一丝提示……也可能是我做题做少了……)

那么我们的$f[i][j]$的含义就变成了$i$子树里的边所能提供的最大贡献是多少,也就变成了树上背包问题了。

这个问题有经典的$O(nk)$算法,只要不像我写的那么丑就没有问题233。

#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=;
const ll INF=1e18;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct node{
int to,nxt,w;
}e[N*];
int n,k,cnt,head[N],sz[N];
ll f[N][N];
inline void add(int u,int v,int w){
e[++cnt].to=v;e[cnt].w=w;e[cnt].nxt=head[u];head[u]=cnt;
}
void dfs(int u,int fa){
sz[u]=;f[u][]=f[u][]=;
for(int i=;i<=k;i++)f[u][i]=-INF;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to,w=e[i].w;
if(v==fa)continue;
dfs(v,u);
for(int i=min(k,sz[u]);i>=;i--){
for(int j=min(k-i,sz[v]);j>=;j--){
ll val=(ll)j*(k-j)*w+(ll)(sz[v]-j)*(n-sz[v]-k+j)*w;
f[u][i+j]=max(f[u][i+j],f[u][i]+f[v][j]+val);
}
}
sz[u]+=sz[v];
}
}
int main(){
n=read(),k=read();
for(int i=;i<n;i++){
int u=read(),v=read(),w=read();
add(u,v,w);add(v,u,w);
}
dfs(,);
printf("%lld\n",f[][k]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4033:[HAOI2015]树上染色——题解的更多相关文章

  1. BZOJ4033 HAOI2015 树上染色 【树上背包】

    BZOJ4033 HAOI2015 树上染色 Description 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白 ...

  2. BZOJ 4033: [HAOI2015]树上染色题解

    BZOJ 4033: [HAOI2015]树上染色题解(树形dp) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327400 原题地址: BZOJ 403 ...

  3. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

  4. BZOJ4033: [HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3461  Solved: 1473[Submit][Stat ...

  5. [bzoj4033][HAOI2015]树上染色_树形dp

    树上染色 bzoj-4033 HAOI-2015 题目大意:给定一棵n个点的树,让你在其中选出k个作为黑点,其余的是白点,收益为任意两个同色点之间距离的和.求最大收益. 注释:$1\le n\le 2 ...

  6. 【题解】 bzoj4033: [HAOI2015]树上染色* (动态规划)

    bzoj4033,懒得复制,戳我戳我 Solution: 定义状态\(dp[i][j]\)表示\(i\)号节点为根节点的子树里面有\(j\)个黑色节点时最大的贡献值 然后我们要知道的就是子节点到根节点 ...

  7. 洛谷P3177||bzoj4033 [HAOI2015]树上染色

    洛谷P3177 bzoj4033 根本不会做... 上网查了题解,发现只要在状态定义的时候就考虑每一条边全局的贡献就好了? 考虑边的贡献和修改状态定义我都想到了,然而并不能想到要结合起来 ans[i] ...

  8. [BZOJ4033]:[HAOI2015]树上染色(树上DP)

    题目传送门 题目描述 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加 ...

  9. BZOJ4033 [HAOI2015]树上染色 【树形dp】

    题目 有一棵点数为N的树,树边有边权.给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并 将其他的N-K个点染成白色.将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间 ...

随机推荐

  1. Visual Studio设置字体及护眼背景色

    打开vs 菜单栏选择: 工具 -> 选择 -> 环境 -> 字体和颜色,如图所示 字体可以如上选择,背景色选择项背景,点击自定义,如下设置即可.

  2. selenium webdriver API详解(二)

    本系列主要讲解webdriver常用的API使用方法(注意:使用前请确认环境是否安装成功,浏览器驱动是否与谷歌浏览器版本对应) 一:获取当前页面的title(一般获取title用于断言) from s ...

  3. 解决登录linux输入密码问题

    1.使用密钥 ssh-keyssh -i .ssh/*.key root@<ip_addr> 2.使用sshpass 安装 rpm 包:yum install sshpass 配置文件: ...

  4. 微软职位内部推荐-SW Engineer II for Windows System

    微软近期Open的职位: Microsoft's Operating Systems Group delivers the operating system and core user experie ...

  5. 微软职位内部推荐-Principal Development Lead - SharePoint

    微软近期Open的职位: SharePoint is a multi-billion dollar enterprise business that has grown from an on-prem ...

  6. win10 tomcat不能访问问题

    问题描述:电脑是Win10系统的,安装了Tomcat后,本机通过80端口能顺利访问.但局域网内的其他机器却无法访问这台电脑的Tomcat服务. 故障分析: 将防火墙关闭后,可以访问,所以问题就出在防火 ...

  7. c++ Dynamic Memory (part 2)

    Don't use get to initialize or assign another smart pointer. The code that use the return from get c ...

  8. ES6的新特性(7)——函数的扩展

    函数的扩展 函数参数的默认值 基本用法 ES6 之前,不能直接为函数的参数指定默认值,只能采用变通的方法. function log(x, y) { y = y || 'World'; console ...

  9. Python3 匿名函数

    一 匿名函数 lambda函数也叫匿名函数,语法结构如下: lambda x:x+1 x --> 形参 x+1 --> 返回值,相当于return x+1 实例(Python3.0+): ...

  10. 2018-2019-20172321 《Java软件结构与数据结构》第五周学习总结

    2018-2019-20172321 <Java软件结构与数据结构>第五周学习总结 教材学习内容总结 第9章 排序与查找 9.1查找 查找是这样一个过程,即在某个项目组中寻找某一指定目标元 ...